

photo: P. Fortin

VERITAS Collaboration

- 90 scientists
- 22 institutions
- 4 countries

US (DOE, NSF, SAO)

Adler Planetarium Argonne Nat Lab Barnard College DePauw U Grinnell College Iowa State U Purdue U
SAO
UCLA
UCSC
U of Chicago
U of Delaware

U of Iowa U of Minnesota U of Utah Washington U

Canada (NSERC)

McGill U

Ireland (SFI)

U College Dublin Cork Inst Tech
National U Ireland Galway Galway-Mayo Inst Tech

UK (STFC)

Leeds U

also ~ 35 associate members theorists, MWL partners (IceCube, Fermi, Swift etc)

VERITAS Science

Study of very-high-energy gamma rays

(VHE: 100 GeV - 30 TeV)

galactic

pulsar wind nebulae (PWNe) supernova remnants (SNRs) binary systems

extra-galactic

active galactic nuclei (AGNs) starburst galaxies

possible sources are:

WIMP annihilation in galaxy cores primordial black hole (PBH) evaporation

VERITAS Science

Connection to (astro) particle physics

- instrumentation and techniques (see later)
- origin of cosmic rays
 - where are the accelerators?
 - how do they work? what energies?(relevant to Auger, HiRes, etc)
- understanding the nature of particle accelerators
 - what is being accelerated? (electrons, protons?) (relevant to IceCube, Antares, etc)
- astrophysical details of AGNs
 - can use flares to look for effects of quantum gravity but only if the start times are well understood
- increase discovery space
 - e.g. larger mass reach for WIMPs

Mechanics of TeV Gamma-ray Astronomy

air shower forms an image on the focal plane

images from gamma rays are different from images due to charged cosmic rays

(good for background rejection)

located in southern Arizona

1.3 km asl on Mt Hopkins (Whipple Observatory basecamp)

800 hours/year under dark skies

200 under partial moonlight

summer monsoon (July-August)

built between 2005 and 2007 (prototype in 2003)

fully operational since September 2007

T1 moved during summer 2009 to improve array layout

Each Telescope

Reflector

- 12 m diameter
- 12 m focal length
- 110 m² area
- 349 hexagonal facets spherical 24 m radius

 - Davies-Cotton mounting

Camera

- 499 29mm PMTs
- 0.15° separation
- 3.5° field-of-view

Trigger and Readout

- -three-level trigger
 - 1. constant fraction discriminator on each PMT
 - 2. pattern trigger on every telescope (require hits on adjacent PMTs typically 3)
 - 3. array trigger (require 2 or more telescopes)

-500 MS/s Flash-ADC on every channel (8-bit dual gain)

Typical trigger rate: 300 Hz (10% deadtime)

VERITAS Performance

energy resolution: 15% - 20%

effective area >100,000 m²

spectral reconstruction: E > 150 GeV

- angular resolution (per event): r_{es} = 0.1°

- energy range: 100 GeV - 30 TeV

32 detections (15 discoveries)
18 extragalactic
7 galactic
7 unidentified

VERITAS catalog June 2010

(tevcat.uchicago.edu S Wakely & D Horan)

Fig: Dr Andy Smith, Argonne National Laboratory

Extragalactic

- mostly blazars
- multiwavelength campaigns important

aim is to understand jet production by supermassive black holes and the physics behind gamma-ray production therein

- leptonic?
- hadronic?

also measure the extragalactic background light (EBL) by observing its effect on blazar spectra

PKS 1424+240

ApJL, 708, 100 (2010) (joint with Fermi LAT, Swift, MDM)

first VHE detection of an AGN as a result of a Fermi follow-up

BL Lac object with unknown redshift (0.06 < z < 0.66 from optical measurements and modeling)

steep power-law (3.8) above 140 GeV (break from Fermi - EBL?)

flux steady at 5% Crab during observations

(Feb 19 - June 21, 2009)

further interpretation needs redshift!

1ES 1218+304

ApJ, 709, 163 (2010)

BL Lac object with known redshift (z=0.182)

power-law (3.1) above 200 GeV

- hard for this large a redshift (expect EBL absorption)
- instrinsic spectrum must be even harder explain with (pc) extended jet

strong flare 7% → 20% Crab observed Jan 25 - Feb 5, 2009

time scale limits size of emission region (< 0.01 pc)

challenge to leading model of hard AGN spectra

M82

Nature 472 770-772 (2009)

first observation of VHE gamma rays from a starburst galaxy (SG) (140 h over two years to detect the source - 0.9% Crab)

5 sigma (post trials) for E > 700 GeV

SGs have high rates of star birth (and death)
many supernovae and stellar winds
copius cosmic-ray production
gamma-ray production from CR collisions

establishes starburst galaxies as a new class of VHE source

supports notion of SNRs as sources of cosmic rays

Galactic

- supernova remnants (SNRs) and pulsar wind nebulae (PWNe)
- binary systems
- sky survey in the Cygnus region

Cassiopeia A

ApJ, 714, 163 (2010)

young (~330 yr) shell-type SNR

expanding into vacuum - 'easy' to model

VFRITAS detection

22 hours (Oct/Nov 2007) 8.3 σ

consistent with point source

power law (2.6 +/- 0.2 +/- 0.2) 0.4 - 4 TeV

flux (> 1 TeV) ~3.5% Crab

modeling (Fermi-LAT) of Fermi and VHE data

hadronic favoured over leptonic but either can be made to work

Credit: NASA/CXC/MIT/UMass Amherst/M.D.Stage et al.

Tycho (G120.1+1.4)

remnant of a supernova event (1572)

X-ray data (blue filaments) imply electrons with energies up to ~10 TeV

also evidence for efficient hadronic particle acceleration

other gamma-ray observations:

no detections from EGRET/Fermi

or from Whipple/HEGRA/MAGIC

VERITAS detection:

67 hours (2008 and 2010) (mean zenith 38°)

5σ post-trials

1% Crab above 1 TeV

peak significance close to molecular cloud - possible interaction?

VERITAS Upgrade

Motivation:

- increased effective area
- better background suppression
- better angular resolution
- lower energy threshold
- faster slewing time

Result is improved sensitivity

- faster detection for a given source strength
- detect weaker/more distant sources

VERITAS Upgrade

T1 relocation

- improve array layout longer baselines eliminate muon triggers
- done in summer 2009
 simultaneous with
 improved facet alignment

Super Bialkali PMTs

- higher QE; 50% increase in photon detection efficiency (like getting a bigger mirror)
- funded now deciding what PMTs to buy (checking QE, afterpulsing, etc)
- install in 2012

VERITAS Upgrade

FPGA-based level-2 (pattern) trigger

- tighter coincidence window (factor two)
- improved diagnostics
- input for future L4 (gamma/hadron discrimination)
- 50% NSB reduction obtained in tests
- funded: install summer 2010

Faster slewing for telescopes

- improved response time for GRBs
- presently under study

Summary

VERITAS is running smoothly ~1000 hours/year

Currently the most sensitive VHE instrument in the world

Fermi is a valuable path-finder and MWL partner

Plenty of new results recently published and forthcoming

Upgrade program will extend VERITAS reach