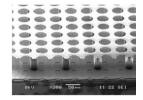


Micro Pattern Gas Detectors in High Energy Physics


J. Kaminski Universität Bonn

ICHEP 2010

July 22rd - 28th 2010 Paris, France

Contents

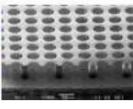
Short overview over Micro Pattern Gas Detectors - MPGDs

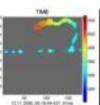
New developments in Micromegas production techniques Combining abstract ID 438 and 518 (both from CEA/Saclay)

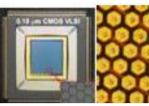
New developments in GEM production techniques

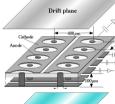
Example: Linear Collider TPC
Abstract ID 938 (by LCTPC Collaboration)

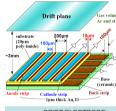
RD51

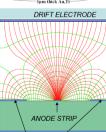












Founded in April 2008 the collaboration already counts ~430 authors from 73 institutes in 25 countries.

The collaboration aims at facilitating the development of advanced gas-avalanche detector technologies and associated electronic-readout systems, for applications in basic and applied research.

WG1: Technological Aspects and Development of New detector Structures

WG2: Common Characterization and Physics Issues

WG3: Applications

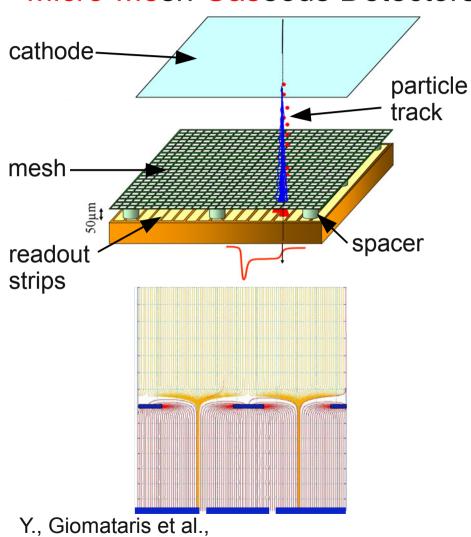
WG4: Simulations and Software Tools


WG5: MPGD Related Electronics

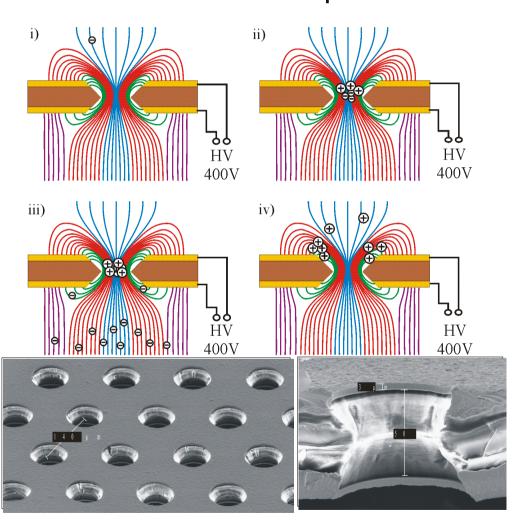
WG6: Production

WG7: Common Test Facilities

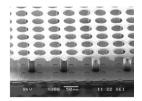
VERY active field of R&D



The Favorites



Micro-Mesh Gaseous Detectors


Y., Giomataris et al., Nucl. Instrum. Meth. A376:29-35,1996.

Gas Electron Multipliers

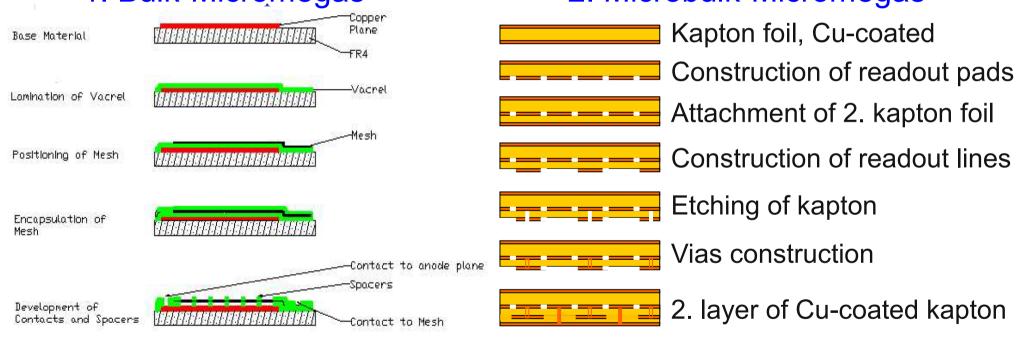
F. Sauli, Nucl. Instrum. Meth. A386:531-534,1997.

Advantages of MPGD

- Small pitch of gas amplification regions (i.e. holes)
 => improves spatial resolution, reduction of E×B-effects
- No preference in direction (as with wires)
 => all 2 dim. readout geometries can be used
- No ion tail => very fast signal (O(10 ns))
 => good timing and double track resolution
- Direct e⁻-collection on pads
 - => small transverse width
 - => good double track resolution
- Ion back drift can be reduced significantly
 - => continuous readout is possible

Applications in thin tracking devices - e.g. COMPASS photon detection - e.g. CAST large volume drift chambers - e.g. LCTPC

Production of Micromegas


First Micromegas had quartz spacers between mesh and readout many test followed: e.g. with fishing lines

IMPORTANT: optimize for high gains and good energy resolution

=> keep gap between grid and anode as precise as possible

1. Bulk-Micromegas

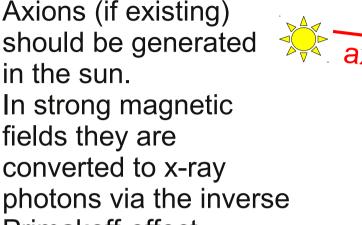
2. Microbulk-Micromegas

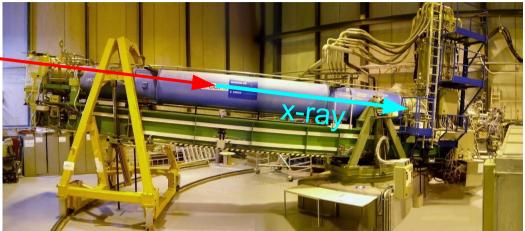
Bulk Micromegas produced by lamination of a woven grid (30 µm thickness) on an anode with a photoimageable film



Production of mesh holes

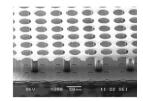
CAST


Axions (if existing) should be generated in the sun. In strong magnetic


fields they are

converted to x-ray

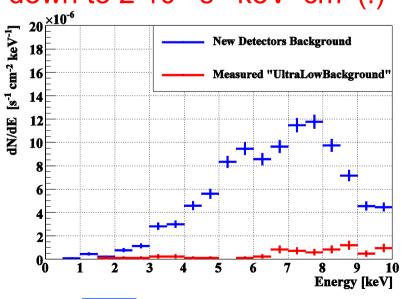
Primakoff-effect

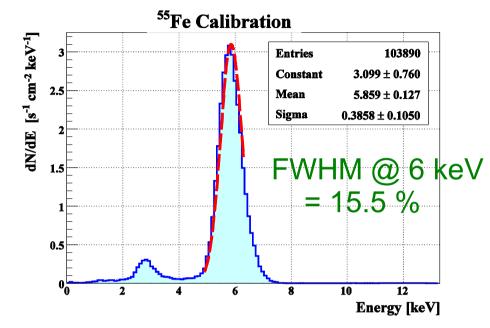


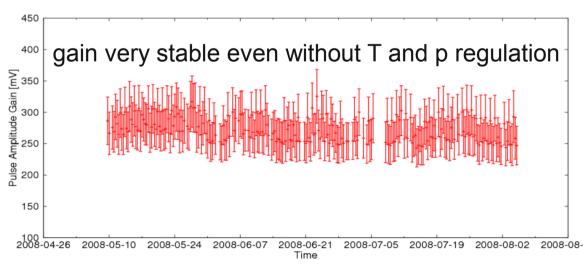
- CAST uses an LHC prototype (dipole) superconducting magnet (B = 9.0T).
- The magnet can follow the sun during sunset and sunrise for ~ 2 h.
- 4 x-ray detectors cover the openings of the two magnet bores: 1 x-ray telescope (mirror optics and CCD), 3 Micromegas detectors
- To improve the sensitivity of the experiment the detectors need good energy resolution, high stability and low background
- => Bulk- and Microbulk-Micromegas have been tested Microbulk-Detectors have been chosen for the upgrade.

CAST

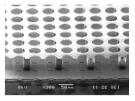
Detector characteristics:

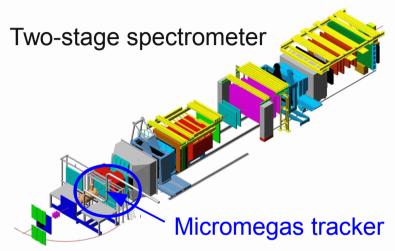

6×6 cm² active area,

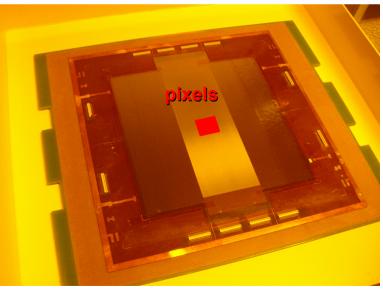

106+106 strips with 550 µm pitch


3 cm drift

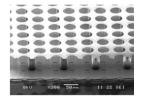
1.43 bar Ar:iButane 97.7:2.3 (non flammable)


Background of Microbulk-detectors dropped from 10⁻⁵ s⁻¹ keV⁻¹cm⁻² down to 2·10⁻⁷ s⁻¹ keV⁻¹cm⁻²(!)




COMPASS Upgrade

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

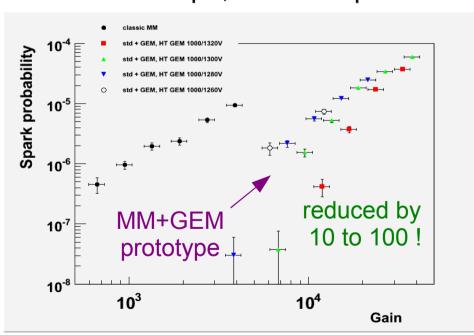


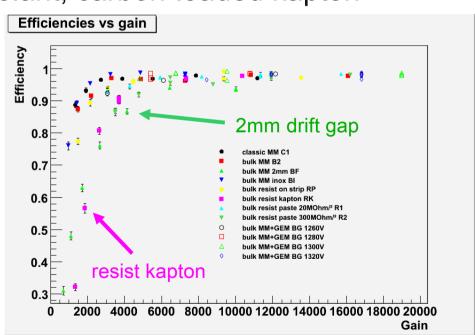
During the upgrade of the COMPASS the Micromegas tracking detectors are to be replaced by improved versions:

- Increase active area by adding 1 mm² pads to the beam area (rates ~100 kHz/mm²)
- 2.) Increase robustness by using bulk technology
- 3.) Use integrated electronics based on APV with discharge protection
- 4.) Reduce discharge rate from present probability of less than 10⁻⁶ per hadron by a factor of 10 to 100

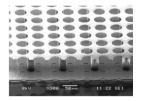
Similar beam conditions at CLAS12 => groups are collaborating to develop detectors with low discharge rates

œ


COMPASS Upgrade



Test of various detector in hadron test beam at CERN:

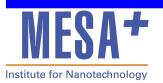

- Standard Micromegas detector (Cu mesh)
- Bulk Micromegas with 30µm inox mesh
- Bulk-Micromegas with reduced drift gap (2mm only)
- Bulk-Micromegas with GEM preamplification
- 4 Bulk-Micromegas with resistive layers: resistive paste on strips, resistive paste on isolant, carbon-loaded kapton

Goal of reduction in discharge rate is reached with resistive layers and GEMs!

(Micro)Bulk-Micromegas ce

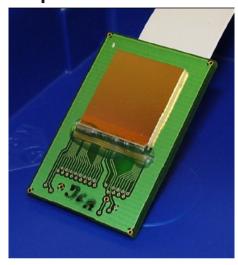
Very compact detector ('all-in-one'):

readout anode and gas amplification stage are combined to one device


Due to well controlled distance anode-mesh the detectors show:

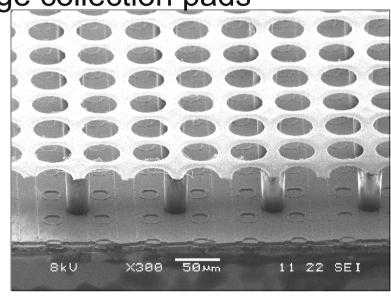
- Excellent energy resolution (down to 11 % FWHM at 6 keV) Microbulk detectors better, since the mesh is thinner
- Time stability of gain and energy resolution
- High radiopurity (low background)
- Low mass
- Radiation resistance
- Detector materials have low neutron interaction cross-sections
- => used in a number of experiment: CAST, NEXT, n TOF, T2K

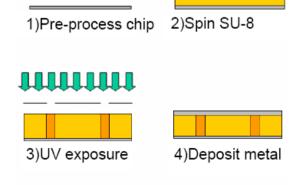
Process can be applied to large areas, e.g. TPC at T2K: O(10 m²)



InGrid

Micromegas ontop of a pixelized readout chip: bump bond pads for Si-pixel detectors serve as charge collection pads

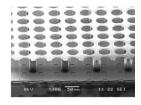


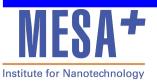

Timepix derived from Medipix-2

 256×256 pixel of size $55 \times 55 \mu m^2$

Each pixel can be set to:

- Hit counting
- TOT ≈ integrated charge
- Time between hit and shutter end

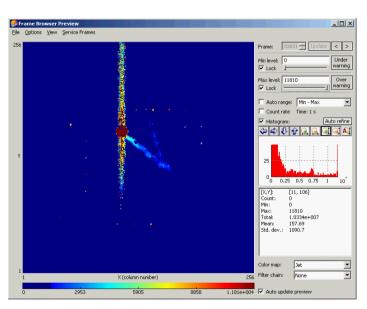




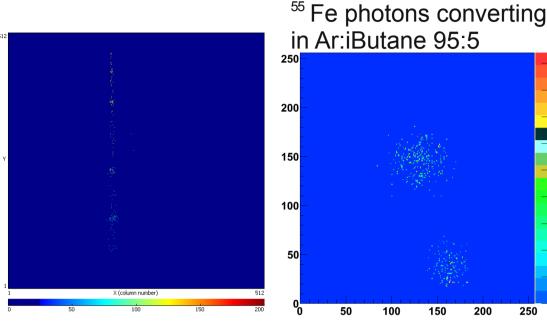
InGrid

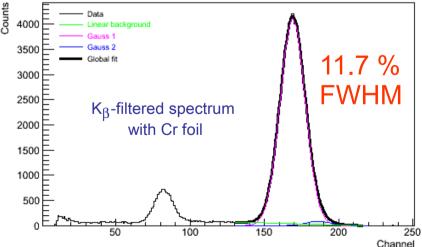
200

160

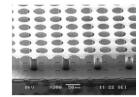

10

80


60 40

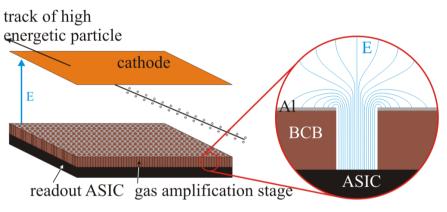

250

Protection layer: high resistive material 15 μm aSi:H (~10¹¹ Ω·cm) 8 μ m Si_xN_y (~10¹⁴ Ω ·cm) MESA+: InGrid



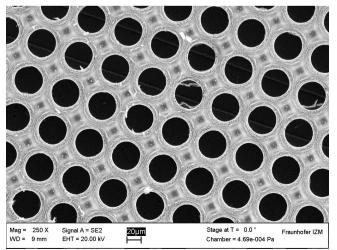
chip survives several 1000 discharges induced by α -particles and hadron beam of PS, CERN

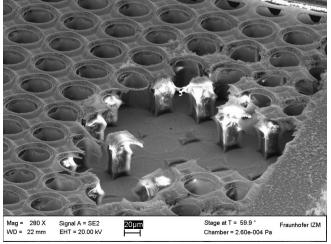
⁵⁵ Fe spectrum in Ar:CH₄ 90:10



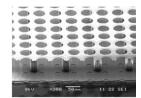
GEMGrid

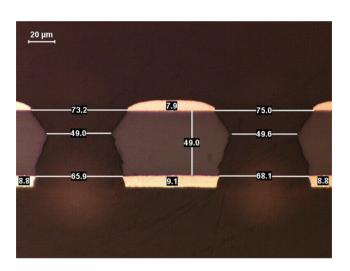
At GEMGrid the grid rests on a solid insulating layer with holes → more mechanical stability
At University of Twente production based on single chips, new wafer based production is established at IZM, Berlin



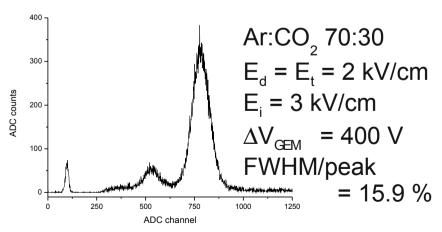

First dummy detectors on bare Si- wafer tested:

- Stand up to 400 V on grid
- Show signals correlated with sources

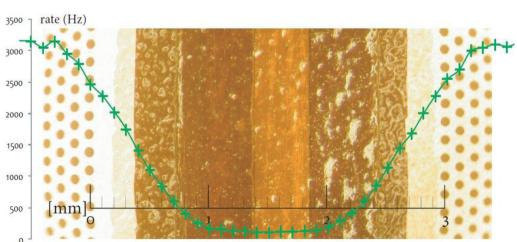

signals of 90 Sr



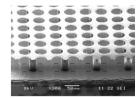
Large Area GEM

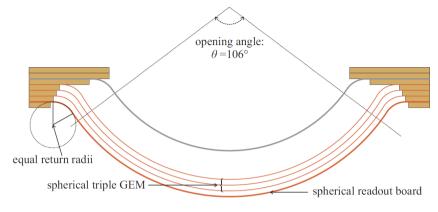


For GEM areas larger than 40×40 cm² the standard production process with 2 masks is not feasible anymore → need single mask process



- The base material is only 457 mm wide
- Get larger width by splicing GEMs
- 2 mm wide kapton overlay on GEM edges
- Pressed and heated up to 240 °C





Spherical GEMs

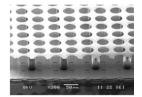
planar detectors cause a parallax error in radial experiments (e.g. x-ray scattering)

→ develop spherical GEMs

GEM foil

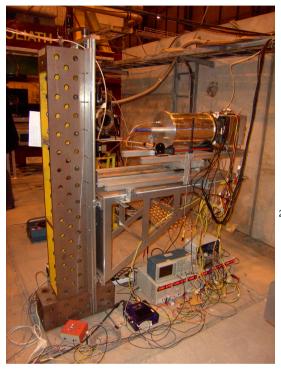
- Use standard GEM
- At vacuum (~10⁻² mbar)
- And 350°C heat
- GEMs are pressed over mold
- GEMs stand HV!

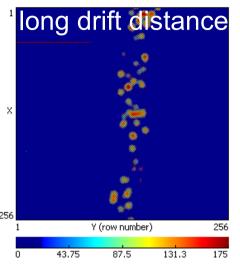
plate

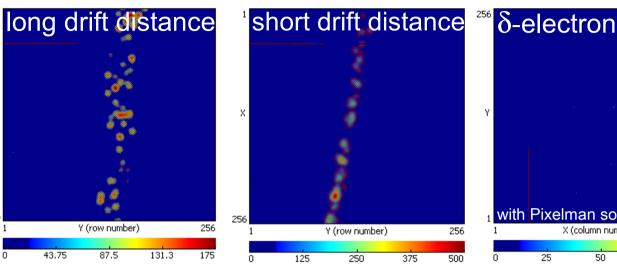

rińg

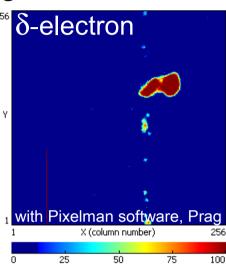
Ø16 cm -

Ø26 cm

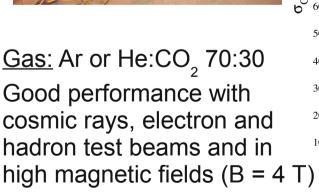


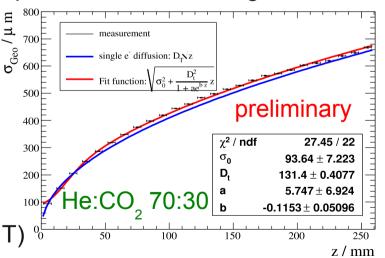


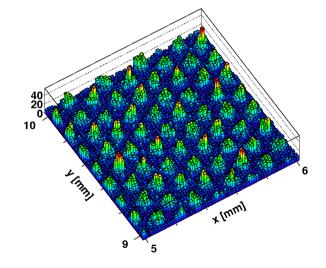

Pixelized Readout of GEMs



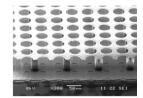
Place Timepix chip below a triple GEM stack, all spacing are 1 mm





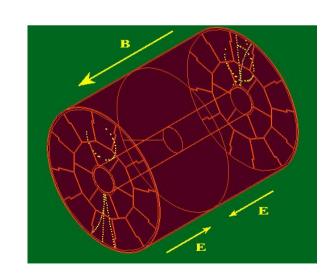


Spatial resolution of single electrons

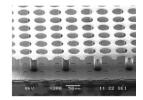


'Electron-tomography' of a GEM

LC-Detectors



International Linear Collider (ILC) / Compact Linear Collider (CLIC): e^+e^- colliders @ $\sqrt{s} = 500 \text{ GeV} - 1\text{TeV}$ / 3TeV

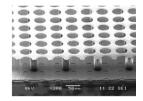

Both accelerators require very precise multi-purpose detectors. Concept of particle flow is considered optimal reconstruction scheme. => need low material budget tracking detectors with high precision, high efficiency and robust particle identification.

TPC is chosen as tracking detector for some detector concepts:

- Good spatial resolution (σ_{point} ≈ 100 μm)
- Large number of measurements (200)
- True 3-dimensional detector (no ambiguities)
- High granularity (10⁹ voxels)
- Good energy resolution with dE/dx (5%)
- Low material budget
- Very homogeneous (only gas)

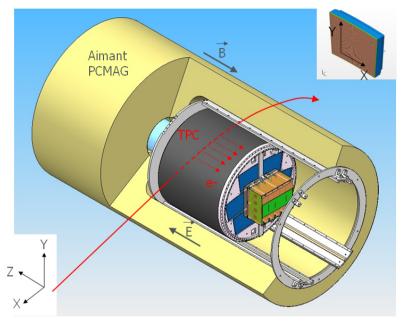


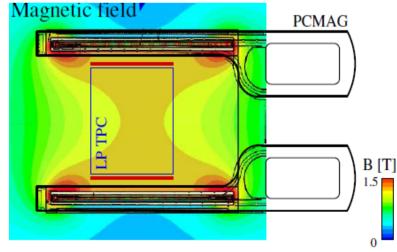
LCTPC - Collaboration


38 Institutes from 12 countries have signed MoU 7 institutes have an observer status

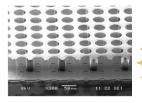
R&D in 3 phases:

- 1. Demonstration Phase test feasibility with small scale detectors at individual labs
- 2. Consolidation Phase a medium size prototype was built to compare results and study integration Issues
- 3. Design Phase design of final detector

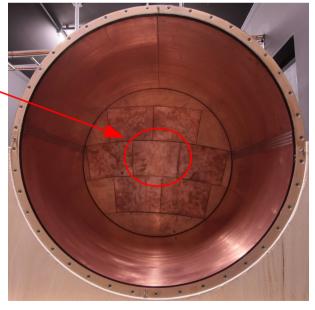

EUDET Facility



EUDET Setup for TPC R&D
PCMAG with B < 1.25 T
bore diameter: 85 cm
LP support structure
Electron test beam with
beam energy E = 1-6 GeV
Field cage (see next slide)

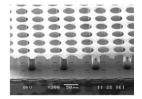


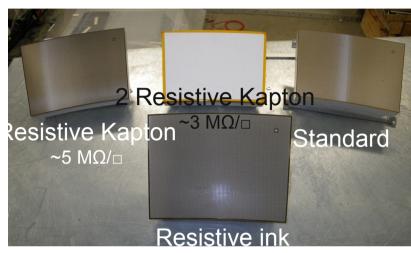
EUDET Large Prototype

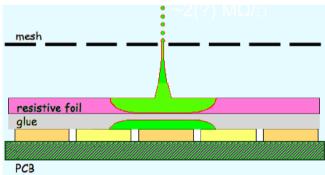


LP Field Cage Parameter: length = 61 cm inner diameter = 72 cm up to 25 kV at the cathode => drift field: E ≈ 350 V/cm made of composite materials: 1.24 % X_o

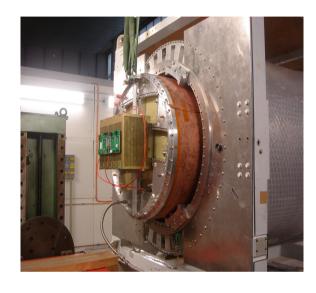
Modular End Plate
first end plate for the LP
made from Al
7 module windows
→ size ≈ 22 × 17 cm²


Large Prototype has been built to compare different detector readouts under identical conditions and to address integration issues.

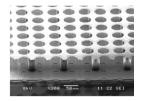




Micromegas Modules

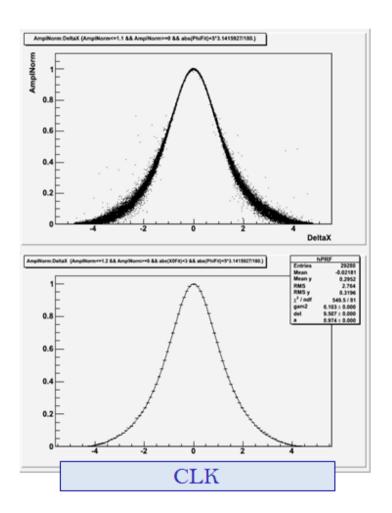


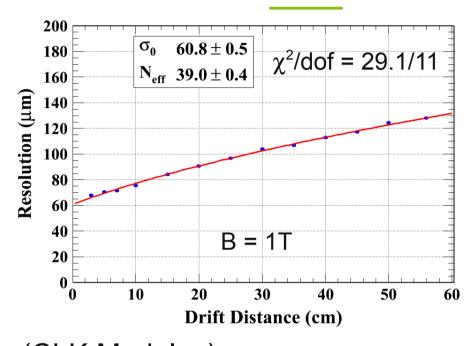
cover readout pads with resistive foil to broaden signal shape



Micromegas Module

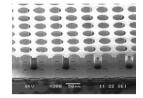
- 3×7 mm² large pads
- 24 row with 72 pads
 - → 1728 pads per module
- Testing resistive foil / carbon loaded kapton (O(1M Ω / \square))
- AFTER electronics (T2K)




Performance of Micromegas

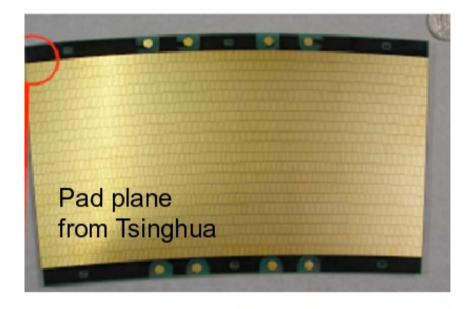
Modules

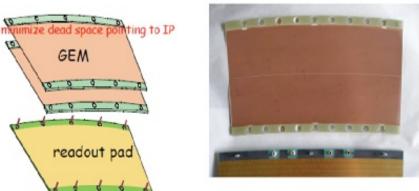
Results (CLK Modules) resolution parametrized as $\sigma = \sqrt{\sigma_0^2 + D_t^2/N_{eff}} \cdot z$


Combining results (e.g. B = 0T, B = 1T):

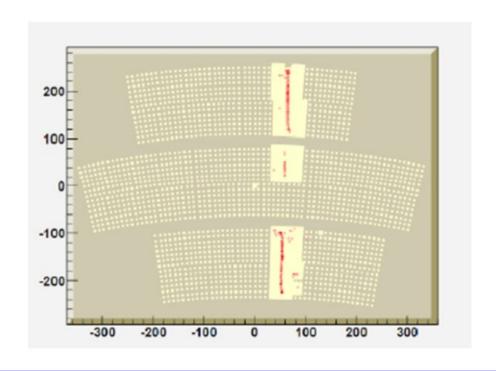
$$\rightarrow \sigma_0 = 59 \pm 2 \mu m$$

 \rightarrow N_{eff} = 38 ± 0.8 per pad height

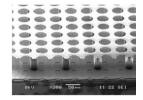




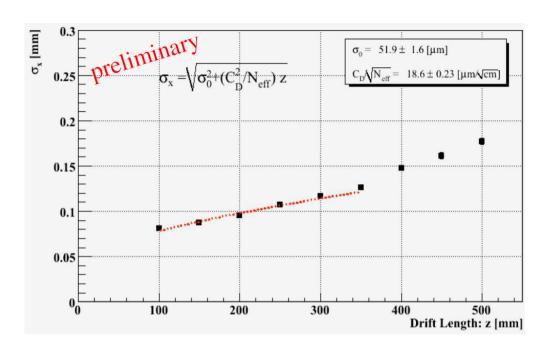
GEM-Modules



GEM Module


1.2×5.4mm² pads - staggered 28 pad rows (176-192 pads/row) about 5000 ch. per module

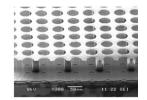
2 GEMs, 100µm thick



Performance GEM-Modules

First Results (GEM Modules)

setup: E = 5 GeV, B = 1T resolution parametrized as $\sigma = \sqrt{\sigma_0^2 + D_t^2/N_{eff}} \cdot z$


$$\rightarrow \sigma_0 = 51.9 \pm 1.6 \, \mu m$$

 \rightarrow N_{eff} = 21 ± 2 per pad height (4.1 mm⁻¹)

=> GEM and Micromegas modules show similar performance

Conclusion & Outlook

Development of Micro Pattern Gaseous Detectors is a very active field. This is underlined by the formation of a new collaboration at CERN: RD51.

New techniques for producing Micro Pattern Gaseous detectors.

→ Techniques are also valid for large area detectors

Performance such as stability, energy resolution, point resolution and reduced discharge probability have been demonstrated.

A large number of different applications have been identified (e.g. LCTPC) and preparation for detector installation are ongoing.

