Quarkonium production at the Tevatron and the LHC

35th International Conference on High Energy Physics Paris, 2010

PIERRE ARTOISENET, The Ohio State University

July 22, 2010

NRQCD factorization

The cross section for inclusive quarkonium production is expressed as a sum of products of short-distance coefficients and long-distance matrix elements

$$\sigma[\mathcal{Q}] = \sum_{n} \hat{\sigma}_{\Lambda}[Q\bar{Q}(n)] \langle \mathcal{O}^{\mathcal{Q}}(n) \rangle_{\Lambda}$$

SD coefficients

many recent works have been devoted to improving their accuracy, i.e. by computing higherorder corrections in α_s

LD matrix elements

for the color-octet, no theoretical tool to constrain the LDME's other than the power counting rules in v

Direct production vs feed-down

- Quarkonium production can also proceed via the decay of heavier hadrons (feed-down)
- * For J/ψ production at the Tevatron:
 - b-hadron decays: EXP: Tevatron II, b→J/ψ+X accounts for 10% of the inclusive production rate at p_T=1.5 GeV (increasing to 45% at p_T=20 GeV) [CDF collaboration, 04]
 - TH: FONLL scheme [Cacciari, Greco, Nason], good agreement between th. and exp.
 - * feed-down from charmonium states:
 - EXP: Tevatron I, $\psi(2S) \rightarrow J/\psi\pi\pi$ and $\chi_c \rightarrow J/\psi\gamma$ accounts for 35% of the prompt production rate [CDF collaboration, 97]
 - TH: NRQCD calculation recently extended at NLO [Ma, Wang, Chao]

In this talk: focus on direct J/ ψ or ψ (2S) hadroproduction

J/ψ direct production

Th. status of direct J/ ψ production at the Tevatron I: 9 years ago

color-octet dominance:

• LO + fragmentation colorsinglet channels undershoot the CDF data by more than an order of magnitude.

• Color-octet contributions fitted to the data describe well the shape in p_T, and the values of the CO LDME's agree with the power counting rules in v.

• similar situation for prompt $\psi(2S)$ production

 ${}^{3}S_{1}[8]$

Color-octet channels: th. vs exp. (update)

* More recent results have challenged the previous picture

Gong, Li, Wang; 08:

NLO correction has little impact on the pheno very small correction to the polarization [also investigated in the frag. approx: Ma 95, Beneke & Rothstein 96, Braaten & Lee, 00].

Color-singlet channel: th. vs exp. (update)

NLO correction:

Campbell, Maltoni, Tramontano, 07 Artoisenet, Lansberg, Maltoni, 07

Gong, Wang, 08:

- Fragmentation approach at large p_T:
 - leading pT component:
 - single-parton fragmentation
 [Braaten, Yuan, 93]
 - next-to-leading pT component
 - charm-quark pair fragmentation

[Kang, Qiu, Sterman, in preparation]

huge enhancement at large p_T. at α_s⁴:
 large th. unc., mainly from variations of the scales →size of higher-order corrections ? (see talk by J.-P. Lansberg)

Wednesday 21 July 2010

What can we learn from the first LHC data ?

* observable: p_T spectrum associated with J/ ψ production

σ^{tot}: large th. uncertainties since dominated by low p_T polarization: measurements require sample with large statistics

- * calculation scheme: NRQCD at leading order in α_s
 - QCD correction to color-octet channels have negligible impact on the pheno (at least for the S-wave) [Gong, Wang, 08]
 - * QCD corrections to the color-singlet yield might have a large impact on the phenomenology, but current th. uncertainties are very large

This scheme provides a test of the color-octet dominance picture for a different collision energy and over a wider p_T range

Additional ingredient:

resummation of $[\alpha_s \log (m_c/p_T)]^n$ to all order in α_s by solving the DGLAP equation for the evolution fragmentation function $d_{g \rightarrow c \overline{c}_8}({}^3S_1)(z,\mu)$

based on a calculation by Maltoni & Petrelli

The short-distance coefficient for the color-octet ³S₁ is expressed as

$$d\hat{\sigma}_{8} ({}^{3}S_{1}) = d\hat{\sigma}_{8}^{FO} ({}^{3}S_{1}) \frac{d\hat{\sigma}_{g \to c\bar{c}_{8}}^{frac}({}^{3}S_{1})}{d\hat{\sigma}_{g \to c\bar{c}_{8}}^{frac}({}^{3}S_{1})} (\mu_{fr} = M_{T})$$

includes both the evolution and the effects from the finite mass of the charm quark

Impact of the evolution

- * decrease of the differential rate by a factor 2 at p_T=25 GeV
- * large uncertainties from the variations of $\mu_{\rm fr}$

Theoretical uncertainties

We repeat the fit to the CDF data for each set of input parameters (any change in the normalization of the SD coefficients is reabsorbed into the color-octet LDME's)

Predicted pt spectrum at the LHC

* th. & exp. uncertainties combined in quadrature

* factor ≈2 of uncertainty
 in the normalization of
 the production rate

* analogous prediction for the forward region

* the pT spectrum can be effectively described by a LO Monte Carlo generator such as Pythia or MadOnia with an appropriate choice of the LDME's 11

Conclusion

- * I presented a prediction for direct J/ ψ production rate at the LHC
- comparison with the data would provide a test of the coloroctet dominance
- * the same approach can be followed for the prompt production of $\psi(2S)$