Combination and QCD Analysis of the HERA Inclusive Cross Sections

Voica A. Radescu (Physikalisches Institut Heidelberg)

on behalf of the HI and ZEUS Collaborations ICHEP 2010, Paris

Outline:

- HI and ZEUS at the HERA collider
- Data Combination
- QCD Analysis
- Results and Comparisons
- Summary

HERA at DESY

H1

• HERA is world's only e[±]p collider

- located at DESY, Hamburg Germany
- In operation for 15 years (1992-2007)
- HI and ZEUS collider experiments

2

ZEUS

3

HI and ZEUS kinematics span over 6 orders of magnitude in x and Q^{2} !

Combination of the HI and ZEUS Measurements

- Ultimate precision is obtained by combining the HI and ZEUS measurements
- The combination procedure is performed before QCD analysis:
 - The combination of data is performed using the χ^2 minimisation procedure
 - I402 of HERA I HI and ZEUS measurements were combined into 741 unique cross section points with 113 correlated systematic sources.
 - > Improvement on Statistical precision:
 - HI and ZEUS collected similar amounts of physics data.
 - > Improvement of Systematic precision:
 - HI and ZEUS are different detectors and use different analysis techniques;
 - The HI and ZEUS cross sections have different sensitivities to similar sources of correlated systematic uncertainty.

Results of Combining HI and ZEUS Data [JHEPOI (2010) 109]

5

The combination procedure yields a consistent data set:

- χ²/dof=637/656
- Before combination, the systematic errors are ~3 times larger than statistical for Q²<100 GeV²
- After combination, the systematic errors are of same precision as the statistical errors, reaching 1% total precision!

QCD Analysis Framework

• Data Sets:

- HERA I combined data [JHEP01 (2010) 109]
 - v NC e⁻, CC e⁻, CC e⁺ (Q²>100 GeV²)
 - v NC e⁺ (Q²>0.045 GeV²)
- Combined HERA II Low Energy Data Set of Ep=460, 575 GeV [prelim.]
 v Q²>2.5 GeV²
- Combined HERA I+high Q² HERA II data [prelim.]
- QCD Fit settings:
 - NLO (and NNLO) DGLAP evolution equations
 - RT-VFNS (as for MSTW08)
 - v Other schemes were investigated as well: RT (optimal), ACOT (full and χ), FFNS
 - PDF parametrised at the starting scale Q_0^2 :
 - $\mathbf{G}, \mathbf{u_{val}}, \mathbf{d_{val}}, \overline{\mathbf{U}} = \overline{\mathbf{u}}(+\overline{\mathbf{c}}), \overline{\mathbf{D}} = \overline{\mathbf{d}} + \overline{\mathbf{s}}(+\overline{\mathbf{b}})$

 $xf(x,Q_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$

- Apply quark number and momentum sum rules
- The optimum number of parameters chosen by saturation of the χ^2
 - central fit with 10 free parameters
 - χ²/dof=574/582

Scheme	TRVFNS
Evolution	QCDNUM17.02
Order	NLO
Q_0^2	$1.9 \ { m GeV^2}$
$f_s = s/D$	0.31
Renorm. scale	Q^2
Factor. scale	Q^2
Q^2_{min}	$3.5~{ m GeV^2}$
$\alpha_S(M_Z)$	0.1176
M_c	$1.4 { m GeV}$
M_b	$4.75~{ m GeV}$

QCD Analysis Framework

- Data Sets:
 - HERA I combined data [JHEP01 (2010) 109]
 - v NC e⁻, CC e⁻, CC e⁺ (Q²>100 GeV²)
 - v NC e⁺ (Q²>0.045 GeV²)
 - Combined HERA II Low Energy Data Set of Ep=460, 575 GeV [prelim.]
 v Q²>2.5 GeV²
 - Combined HERA I+high Q² HERA II data [prelim.]
- QCD Fit settings:
 - NLO (and NNLO) DGLAP evolution equations
 - RT-VFNS (as for MSTW08)
 - v Other schemes were investigated as well: RT (optimal), ACOT (full and χ), FFNS
 - PDF parametrised at the starting scale Q₀²:
 - $\mathbf{G}, \mathbf{u_{val}}, \mathbf{d_{val}}, \overline{\mathbf{U}} = \overline{\mathbf{u}}(+\overline{\mathbf{c}}), \overline{\mathbf{D}} = \overline{\mathbf{d}} + \overline{\mathbf{s}}(+\overline{\mathbf{b}})$

 $xf(x,Q_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$

- Apply quark number and momentum sum rules
- The optimum number of parameters chosen by saturation of the χ^2
 - central fit with 10 free parameters
 - χ²/dof=574/582

Scheme	TRVFNS
Evolution	QCDNUM17.02
Order	NLO
Q_0^2	$1.9 \ { m GeV^2}$
$f_s = s/D$	0.31
Renorm. scale	Q^2
Factor. scale	Q^2
Q^2_{min}	$3.5~{ m GeV^2}$
$lpha_S(M_Z)$	0.1176
M_c	$1.4~{ m GeV}$
M_b	$4.75~{ m GeV}$

QCD Analysis Framework

• Data Sets:

- HERA I combined data [JHEP01 (2010) 109]
 - v NC e⁻, CC e⁻, CC e⁺ (Q^{2} >100 GeV²)
 - v NC e⁺ (Q²>0.045 GeV²)
- Combined HERA II Low Energy Data Set of Ep=460, 575 GeV [prelim.]
 v O²>2.5 GeV²
- Combined HERA I+high Q² HERA II data [prelim.]
- QCD Fit settings:
 - NLO (and NNLO) DGLAP evolution equations
 - RT-VFNS (as for MSTW08)
 - v Other schemes were investigated as well: RT (optimal), ACOT (full and χ), FFNS
 - PDF parametrised at the starting scale Q₀²:
 - $\mathbf{G}, \mathbf{u_{val}}, \mathbf{d_{val}}, \overline{\mathbf{U}} = \overline{\mathbf{u}}(+\overline{\mathbf{c}}), \overline{\mathbf{D}} = \overline{\mathbf{d}} + \overline{\mathbf{s}}(+\overline{\mathbf{b}})$

 $xf(x,Q_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$

- Apply quark number and momentum sum rules
- The optimum number of parameters chosen by saturation of the χ^2
 - central fit with 10 free parameters
 - χ²/dof=574/582

Scheme	TRVFNS
Evolution	QCDNUM17.02
Order	NLO
Q_0^2	$1.9 \ { m GeV^2}$
$f_s = s/D$	0.31
Renorm. scale	Q^2
Factor. scale	Q^2
Q^2_{min}	$3.5~{ m GeV^2}$
$\alpha_S(M_Z)$	0.1176
M_c	$1.4 { m GeV}$
M_b	$4.75~{ m GeV}$

Sources of PDF uncertainties at HERA

- Experimental Uncertainties:
 - Consistent data sets \rightarrow use $\Delta \chi^2 = I$
- Model Uncertainties:
 - following variations have been considered

Variation	Standard Value	Lower Limit	Upper Limit
f_s	0.31	0.23	0.38
m_c [GeV]	1.4	1.35	1.65
m_b [GeV]	4.75	4.3	5.0
Q^2_{min} [GeV ²]	3.5	2.5	5.0

- Parametrisation Uncertainties:
 - An envelope formed from PDF fits using other variants of parametrisation form at the starting scale:
 - v Scanning of II parameter space
 - ∇Q_0^2 variation and negative gluon parametrisation
 - v Relaxing assumptions used for central fit

HERAPDFI.0 at NLO

- Observe valence like shape of the gluon at the starting scale.
- Parametrisation uncertainty dominates.
- HERAPDFI.0 set available in LHAPDF since v5.8.1 (Dec 2009)

HERAPDFI.0 vs NC DIS Data

H1 and ZEUS

 $J_{r,NC}^{+}(x,Q^{2}) \ge 2^{\frac{1}{2}}$ 10 7 Plots show the extended HERA I NC e⁺p = 0.00005, i=21**Fixed Target** 10⁶ = 0.00008. i=20 kinematic range of the HERA 00013. i=19 HERAPDF1.0 .00020. i=18 I data as compared to the 0.00032. i=17 10⁵ : 0.0005. i=16 fixed target measurements: 0.0008, i=15 0.0013, i=14 10⁴ = 0.0020. i=13 = 0.0032.i = 12• Data points include = 0.005, i=11 experimental errors 10^{3} 0.008, i=10 = 0.013. i=9 Fit line includes total error = 0.02, i=8 10² x = 0.032, i=7x = 0.05, i=6**HERAPDFL**⁰ fit describes 10 x = 0.08, i=5our data well! x = 0.13, i=4x = 0.18, i=3 1 x = 0.25, i=2Extrapolation of the -1 x = 0.40, i=110 HERAPDFI.0 fit agrees well with fixed target data (SLAC 10⁻²) x = 0.65, i=0and BCDMS)! 10 10³ 10² 10⁴ 10⁵ 10 1 Q^2/GeV^2

O

0

HERAPDFI.0 vs Tevatron Data

 \circ Predictions for high-ET jet cross-sections with full uncertainties compared to the D0 data

• DIS data from HERA predicts Tevatron jets production from ppbar process.

Z and W at Tevatron are well predicted by HERAPDFI.0

• Hence, there is a universal description of partonic processes and all can be described with: HERA input, SM couplings and pQCD evolution!

HERAPDFI.0 vs Tevatron Data

• Hence, there is a universal description of partonic processes and all can be described with: HERA input, SM couplings and pQCD evolution!

voica@mail.desy.de

LHC predictions based on HERAPDFI.0

HERAPDF fits at NNLO

- Fits performed to HERA I data (as used for HERAPDF1.0) at NNLO using RT-VFNS:
 - $\alpha_{\rm S}({\rm Mz})$ at NLO = 0.1176
 - $\alpha_{s}(Mz)$ at NNLO = 0.1145

scheme	NNLO	NNLO	NLO
All χ^2 /dof	623.7/582	638.3/582	574.4/582

• NNLO fits are slightly worse than NLO

Note: Plots at NNLO are compared to HERAPDFI.0 (NLO) only illustratively → expect to be different!

HERAPDF including Low Energy data

xf

• Preliminary HERA Combined Low Energy data available!

 New accurate measurement in Q²>2.5 GeV² range, sensitive to structure function F_L are included in the QCD analysis on top of the HERA I data→

 PDFs from the new fit agree very well with HERAPDF1.0

Data sets	HERAPDFI.0	+ Low Energy data
Total χ^2 /dof	574/582	818/806

HERAPDF including Low Energy data

• Preliminary HERA Combined Low Energy data available!

 New accurate measurement in Q²>2.5 GeV² range, sensitive to structure function F_L are included in the QCD analysis on top of the HERA I data→

- However, The $Q^2 \ge 5 \text{ GeV}^2$ cut brings large improvement in χ^2 [818/806 \rightarrow 698/771] and it yields different shapes for gluon and sea PDFs.
 - for HERAPDFI.0, Q² cut variation is included in the model uncertainty, but it had smaller effect.

HERA F_L data vs F_L predictions

The lines are F_L predictions using combined HERA I and low energy data.

Low Q^2 region remains very interesting for further QCD tests!

Combining HERA I and II Inclusive data

- New HERA II preliminary data available!
 - More precise measurements in the high Q^2 and high x regions (especially NC e⁻p and CC e[±]p)
 - → could constrain better PDFs at high x
- HERA I and HERA II are combined using same averaging procedure as described before:
 - 674 unique cross sections points with 134 sources of systematic uncertainties

Fits to New Combined HERA data: HERAPDF1.5

- Propagate new data through QCD fit analysis to produce a new set of HERAPDFs: HERAPDF1.5
 - For preliminary studies use same settings as for HERAPDFI.0
 - Parametrisation uncertainty will be further investigated for final release.

voica@mail.desy.de

HERAPDFI.5 vs HERAPDFI.0

• xg, xu_v, xd_v, xSea (xSea=x \overline{U} +x \overline{D}) at the scale Q₀²=10 GeV²

- Inclusion of the HERA II data reduces the uncertainties on PDFs in the high x region especially visible on the valence distributions!
 - See HERAPDF1.5(prel) vs HERAPDF1.0

- HERA provides accurate determinations of the proton structure and can predict related Standard Model processes!
- New preliminary measurements from HERA II time period are available in the HERA QCD analyses!
- Using HERA information, we have precise predictions for the LHC and the time has come to confront them with the data!

