Studies of WW and WZ production at CDF

Viviana Cavaliere

University of Siena, INFN Pisa & Fermilab

on behalf of the CDF Collaboration

ICHEP 2010, 22/07/2010

Physics Motivation

- Direct probe into the gauge structure of the SM:
 - S-channel probes triple gauge couplings (TGC)
 - TeV with respect to LEP: explores higher energy range
- Cross sections can be enhanced by new physics
- Diboson final states close to higgs final states
- Benchmark for experimental capabilities towards Higgs

$CDF \ detector$

- Proton-antiproton collision at $\sqrt{s} = 1.96$ TeV
- Peak luminosity $4.0 \cdot 10^{32}$ cm⁻² s⁻¹

 ${\small \bullet}~$ Data taking efficiency $\sim 85\%$

Heavy Diboson Production

Leptonic Decay Channels

Small branching fraction and low background Clean signal but low yields Key \rightarrow increase lepton acceptance

Semileptonic Decay Channels

Larger branching fraction and much larger backgrounds Signal / Background < 0.5%

WW cross section using 3.6 fb^{-1}

1 WW $\rightarrow \ell \nu + \ell \nu$ production

- Test SM predictions: x-section, TGC
- Dominant background for H→ WW (same analysis)
- Can be enhanced by new physics or Higgs
- Iwo isolated leptons and large MET
- Likelihood ratio formed from Matrix element probabilities

$$\begin{split} \sigma^{NLO}(p\bar{p}\rightarrow WW) &= 11.7\pm 0.7pb\\ \sigma(p\bar{p}\rightarrow WW) &= 12.1^{+1.8}_{-1.6}pb \end{split}$$

Phys. Rev. Lett. **104** (2010) 201801 WW cross section with a precision of less than 15 %.

WW and Triple Gauge Couplings

- Two diagrams producing WW: s-channel, and t-channel.
- s-channel is susceptible to anomalous triple gauge couplings: $\Delta K^z, \Delta K^\gamma, \Delta g_1^z, \Delta g_1^\gamma, \lambda^z, \lambda^\gamma$
- HISZ scheme (*Phys. Rev.* D 48 (1993) 2182) ties these together to make 3 independent parameters

• Fit lepton p_T distribution

CDF Preliminary Results at $3.6 fb^{-1}$			
Λ	λ^Z	Δg_1^Z	$\Delta \kappa^{\gamma}$
2.0TeV	(-0.14,0.15)	(-0.22,0.30)	(-0.57,0.65)
1.5TeV	(-0.16,0.16)	(-0.24,0.34)	(-0.63,0.72)

WZ cross section

- Require 3 e or μ leptons and $E_T > 25$ GeV
- Lepton ID optimization
 - Improved electron/muon isolation
 - 2 Recover central/plug transition
 - 3 Tight track quality
 - Ormalize to Z → ℓℓ to reduce the systematic uncertainties

 $\sigma \left(p\bar{p} \rightarrow WZ \right) = 4.1 \pm 0.6 {\rm (stat.)} \pm 0.4 {\rm (sys.)} \ pb$

 $\sigma(WZ)NLO = 3.7pb$

WW/WZ at CDF

 $VV \rightarrow E_T + jets$

- $\bullet\,$ Jet final states are more difficult \to Resolution much worse
- Select jj+MET events
 - Acceptance to $\nu\nu$ and $l\nu$ events (WW, WZ, ZZ)
 - Milestone for low mass Higgs searches
 - Similar final state to ${\rm ZH} \rightarrow ~\nu\nu + bb$
- Analysis challenge:
 - Triggered data dominated by QCD multijet events with fake *E*_T

2 After trigger Signal/QCD $\sim 10^{-4}$

- Reject QCD based on sophisticated E_T resolution model [arXiv:0910.5170]
- After QCD rejection: Signal/QCD~0.2

 $VV \rightarrow met + jets$

- Fit M_{jj} distribution
- EWK M_{JJ} shape: checked with γ +jj \rightarrow significantly reduces systematics
- Fitted Jet Energy scale compatible with 1

 $\sigma(WW + WZ + ZZ) =$ $18.0 \pm 2.8(\text{stat}) \pm 2.4(\text{syst}) \pm 1.1(\text{lumi}) \text{ pb}$

SM: $16.8 \pm 0.5 pb$ (MCFM + CTEQ6M)

First observation in hadronic final state: 5.3 σ significance

Phys. Rev. Lett. 103 (2009) 091803

 $WW/WZ \rightarrow l\nu + jets$

- Require high p_T lepton, large E_T, and two jets
- Build W or Z from two-jet system:
 - Dijet mass resolution doesn't allow to distinguish between W and Z
- WW is dominant (WZ has lower cross section, branching ratio)

Two measurements of WW/WZ \rightarrow lvjj have been carried out at CDF

- Matrix element analysis in 4.6 fb $^{-1}$ (2.7 fb^{-1} published)
- Search for resonance in dijet invariant mass spectrum in 4.3 fb⁻¹ (3.9 fb^{-1} published)

Phys. Rev. Lett. 104 (2010) 101801

10 / 15

V. Cavaliere

WW/WZ at CDF

ICHEP 2010, 22/07/2010

11 / 15

• Two different approaches used:

 M_{ii} method in 4.3 fb⁻¹

First approach uses the shape of M_{ii} of the two leading jet to look for a clear resonance

- Use $p_T > 40$ GeV/c cut to smoothen mij distribution
- Fit to extract ths signal : 1582 ± 275 (stat.) ± 107 (syst) $WW/WZ \rightarrow l\nu jj$ events

 $\sigma_{WW/WZ} = 18.1 \pm 3.3 (\text{stat.}) \pm 2.5 (\text{syst.}) \text{ pb}$

- Compatible with SM cross section: • $(15.9 \pm 0.9 \text{ pb})$
 - Significance 5.2 σ (5.1 expected)

Matrix Element method in 4.6 fb^{-1}

- Second approach uses a multivariate technique to exploit all the information in the event.
 - Use matrix element calculation to build discriminant (EPD) to separate signal and background

$$EPD = P_{sig} / (P_{sig} + P_{BG})$$

• Likelihood fit to extract signal.

12 / 15

$WZ \rightarrow \ell \nu + b\bar{b}$

- Cross section $\sigma(WZ \rightarrow l\nu b\bar{b}) = 0.12pb$
- Important benchmark toward higgs searches
- Event selected requiring one lepton (tight and central), $\mathcal{E}_T > 20$ GeV and two jets.
- The two b-jets identified with NN algorithm :
 - Uses both the lifetime information as well as the lepton information.
 - 2 Per-jet output value $\rightarrow 1 = more$ b-jet like.
 - Int tagged if output > 0.0
- Another is NN used to discriminate between WZ and other backgrounds
- Set a limit with 4.3 fb⁻¹:

 $\sigma_{obs} < 3.9 \cdot \text{SM} (3.9 \text{ expected})$ at 95 % CL

-0.5 0.5 -1 0

13 / 15

CDF Run II Preliminary 3 fb⁻¹

 $ZW + ZZ \rightarrow ll + jj$

- Combination of WZ and ZZ still unobserved:
 - Expected cross section $5.0\pm0.4~\rm{pb}$
 - Branching ratio of $Z \rightarrow |eptons \; small$
 - Z+jets background is very large
 - Motivates new quark-gluon discriminant
- Jet Likelihood Ratio: Quark/Gluon Discriminant
 - Energy in q jets less spatially spread than in g jets → quantified as Jet LR: larger = more quark-like
- Build NN discriminant
- Fit of 4.8 fb⁻¹ data to S+B template yields:
 - set a limit on σ_{ZW+ZZ} of

 $\sigma_{ZZ+ZW} < 2.9$ $\,\cdot\, {\rm SM}$ at 95 % CL

14 / 15

Conclusion

- Diboson physics a rich and interesting place
 - SM tests
 - Higgs benchmark
 - New physics searches
- Larger Tevatron datasets allows for more targeted searches
- Most interesting results are yet to come!!