Particle Production Studies at LHCb

Christopher Blanks Imperial College on behalf of the LHCb collaboration

> 23 July 2010 ICHEP 2010, Paris

35th International Conference on High Energy Physics

Contents

- Introduction to LHCb: Tracking & Particle ID
- K_s production cross-section
- Strange particle (V⁰) ratios
- Proton ratios
- Summary

The LHCb detector in the point 8 cavern at CERN

2/20

The LHCb Experiment

A forward detector $(2 < \eta < 5)$ for precision measurement of CP violation and rare B-decays:

C Blanks – ICHEP 2010, Paris

The LHCb Experiment

A forward detector $(2 < \eta < 5)$ for precision measurement of CP violation and rare B-decays:

LHCb Tracking

Tracking $\delta p/p \approx 0.4\%$ with 95% reconstruction efficiency VELO precision $\sigma(z) \approx 50$ (150) µm for Primary (Secondary) Vertex [see talk by Sylvia Borghi]

LHCb Tracking

A forward detector (2<n<

CP violation and rare B-de

A completed VELO module before installation

VELO open 15 mm at $\sqrt{s} = 0.9$ TeV due to width of low-energy beam

Tracking $\delta p/p \approx 0.4\%$ with 95% reconstruction efficiency VELO precision $\sigma(z) \approx 50$ (150) µm for Primary (Secondary) Vertex [see talk by Sylvia Borghi]

LHCb RICH Detectors

2 Ring Imaging Cherenkov (RICH) detectors distinguish charged particles by mass over a momentum range of 2 to ~100 GeV/c [*see talk by Andrew Powell*]

K_S Production Cross-Section

An ideal first measurement for LHCb, with high-purity selections requiring no particle identification

K_s -> ππ selection based on track and K_s impact parameters

Key Systematic Contributions:

- Luminosity (beam ~12% current measurement) [see talk by Massi Ferro-Luzzi]
- Tracking efficiency ~10%

C Blanks – ICHEP 2010, Paris

K_S Cross-Section Results

A unique measurement at high rapidity & at lower p_T than previous experiments (see back up slide)

Ratio Measurements

Theoretical interest in ratios *e.g.*

- baryon number transport,
- baryon vs. meson suppression in hadronisation

V^o ratios $\overline{\Lambda}/\Lambda$ $\overline{\Lambda}/K_s$ Only tracking & vertexing

All abundant in minimum bias data

V⁰ Ratios

High-purity K_S & Λ selection based on a combination of impact parameters (IP): $\nu = \log \frac{IP^+ \times IP^-}{IP^{\nu^0}}$

V⁰ background removed by changing daughter hypotheses

Binning p_T , y after boost correction for beam crossing angle

Efficiency from LHCb-tuned PYTHIA generation and GEANT simulation for **prompt**, **non-diffractive** events

Preliminary Results $\overline{\Lambda}/\Lambda$

Another unique measurement at high rapidity with pp collisions at $\sqrt{s} = 0.9 \& 7$ TeV

Baryon number transport appears higher than predicted at $\sqrt{s} = 0.9$ TeV

Preliminary Results $\overline{\Lambda}/K_{s}$

Baryon vs. meson production ratio measurement with pp collisions at $\sqrt{s} = 0.9 \& 7 \text{ TeV}$

Baryon suppression in hadronisation significantly lower than predicted

13/20

Proton Ratio

Pure samples Protons selected with RICH particle ID

Detector acceptance

Particle identification (*DLL*) calibrated with trackingselected samples: $\pi(K_S)$, $p(\Lambda) \& K(\varphi)$ [see talk by Andrew Powell] Cuts tuned for purity in MC, efficiency measured in data

Preliminary Results p/p

vs = 0.9 TeV

Baryon number transport closer to predictions

23 July 2010

Preliminary Ratio Systematics

Ratios a great target for early measurements since absolute luminosity measurement not required

Remaining systematics relate to MC, data comparisons

Uncertainties	Errors
p, π interaction cross-sections	~10%
V ⁰ production & interaction cross-sections	~10%
LHCb material description	<10%
Λ transverse polarisation	<1%
Selection cuts (dominated by PID)	1-14%
Ghost tracks	<2%
Acceptance asymmetries	~2%
Non-prompt contamination	<1%

Ratio	Total
$\overline{\Lambda}/\Lambda$	~2%
⊼/K _s	2-12%
p/p	3-14%

Preliminary Results Comparison

Results at both beam energies compared in Δy show consistency, also with other experiments :

C Blanks – ICHEP 2010, Paris

Preliminary Results Comparison

Results at both beam energies compared in Δy show consistency, also with other experiments :

Preliminary Results Comparison

Results at both beam energies compared in Δy show consistency, also with other experiments :

$$\Delta y = y(beam) - y(\Lambda, p)$$

y(beam): 6.6 : √s = 0.9 TeV 8.3 : √s = 7 TeV

Summary

- K_s cross-section measured with 2009 data
- Preliminary results in 2010 for ratios of V⁰ & protons
- Results suggest lower Baryon suppression & higher Baryon transport in data than predicted

Look out for new LHCb publications soon!

Back up

K_s Cross-section Comparison

A measurement with lower $p_{\rm T}$ coverage than CDF, UA1, UA5

C Blanks – ICHEP 2010, Paris

Raw Charged Particle Ratios

vs = 0.9 TeV

Corrected ratios for K, π are a work in progress...

