

What?

Top was discovered at Fermilab in 1995
Its mass much larger than any other fermion
Using the latest Tevatron-averaged M_{top} arXiv:1007.3178

$$L_{\rm Yukawa} = -\lambda \overline{\psi}_L \Phi \psi_R$$

Yukawa coupling = 0.996 ± 0.006

- What role does it play in EW symmetry breaking?
- Several authors point to a special role for the top quark

Lifetime shorter than hadronization time

→ only quark that decays before hadronizing

Hows

Top anti-top production is the dominant mode at a hadron collider

$$\sigma_{\rm H}$$
=7.5pb*

- QCD process: test pQCD NLO calculation
- First step in understanding selected top quark sample
- New physics in the troduction or decays could appear as larger/lower $\sigma_{\rm H}$, or in different measured $\sigma_{\rm H}$ in different channels

Where?

Fermilab's Tevatron Run II $p\bar{p}$ collider at 1.96 TeV, running since year '01. Currently performing very well:

- New record in instantaneous luminosity 4 · 10³² cm⁻² s⁻¹
- New record in delivered luminosity: >2fb-1 per year
- Two multi-purpose, well-understood detectors CDF and D0

Top created in 1 in $O(10^{10})$ collisions at the Tevatron

How many?

Pair production decay signatures

Lepton+Jets acceptance

large BR(30%)

good S/B ratio.

Dileptonic

Highest S/B

lowest BR(5%)

All hadronic

highest BR(44%)

Very large QCD background

Pair production decay signatures

Lepton+Jets

- large BR(30%)
- good S/B ratio.

Dileptonic

- Highest S/B
- lowest BR(5%)

All hadronic

- highest BR(44%)
- Very large QCD background

Tau modes 💖

explicit tau identification

 Lepton+jets and dileptonic decays where electron/muon is not id'ed.
 Large acceptance to taus

Pair production decay signatures

than 30 000 top quarks by 2011

Lepton+Jets

- large BR(30%)
- good S/B ratio.

Dileptonic

- Highest S/B
- lowest BR(5%)

All hadronic

- highest BR(44%)
- Very large QCD background

Tau modes 💹

explicit tau identification

 Lepton+jets and dileptonic decays where electron/muon is not id'ed.
 Large acceptance to taus

acceptance 13%

Total

Jets

Quark/gluons hadronize and produce particle jets. B-jets identification very important for top physics

Seconday vertex: b-quark id'ed w long lifetime of the B mesons they form: identification through search of a secondary vertex within a jet:

b-tag eff: ~ 40% fake rate ~ 0.5%

Neural Network for flavor separation

 L_{xy}, vertex mass, track multiplicity, impact parameter, semi-leptonic decay information, etc...

Lepton+jets b-tagged

Counting experiment after background understanding:

- W+HF cross section underestimated in the MC: W+HF content measured in data in the 1 or 2 jet event sample
- b-tagging mistag rate measured in data, parametrization applied to W+jets
- CDF measures ratio of ttbar/Z→II with the same trigger and use the theoretical Z cross section to remove the uncertainty due to luminosity measurement

D0 (L=4.3fb⁻¹): σ_{tt} = 7.93 ± 0.98 (stat+syst+lumi) pb CDF(L=4.3fb⁻¹): σ_{tt} = 7.32 ± 0.71 (stat+syst+theory) pb

Lepton+jets topological

One step further: signal/background discrimination:

- ttbar more energetic, central and isotropic than W+jets
- NN (CDF) or BDT (D0) input variables: Ht, aplanarity, sphericity, etc.
- cross section measurement: template fit of ttbar and W+jets to the discriminant output
- CDF measures ratio of ttbar/Z→II with the same trigger and use the theoretical Z cross section to remove the uncertainty due to luminosity measurement

PRL 105 012001 (2010)

D0 (L=4.3fb⁻¹): $\sigma_{tt} = 7.70 \pm 0.75$ (stat+syst+lumi) pb CDF(L=4.6fb⁻¹): $\sigma_{tt} = 7.82 \pm 0.55$ (stat+syst+theory) pb

Simultaneous S and B kinematic fit

Looser event selection, better constraint on backgrounds

- Use events with 1lepton, ≥1jet, ≥1b-tag to measure signal cross section and background contributions.
- Templates: NN based flavor separator, N_{jets}, N_{btags}
- Fit simultaneously for $\sigma_{\rm H}$, W+heavy flavor fractions and systematics sources in situ
- Potentially very sensitive as more data is added

 $\sigma_{tt} = 7.64 \pm 0.57 \text{(stat+syst)} + 0.45 \text{(lumi) pb}$

Dileptonic channel

Signal/background discrimination

- CDF: Ht and MET significance cuts, or b-tagging
- D0: Ht cut and BDT trained against Z+jets and diboson

D0 (L=5.3fb⁻¹): $\sigma_{tt} = 8.4 \pm 0.5(stat) \pm 0.9(syst) \pm 0.7$ (lumi) pb Pretag CDF (L=5.1fb⁻¹): $\sigma_{tt} = 7.4 \pm 0.6(stat) \pm 0.6$ (syst) ± 0.5 (lumi) pb

All-hadronic channel

Both collaborations use b-tagging and multivariate techniques to isolate the signal from the overwhelming QCD background

To measure the cross section:

- \bullet CDF cuts on NN output, scans the reconstructed $M_{\rm top}$
- D0 scans the likelihood output

JES largest syst: CDF uses W→qq decays to constrain it

Exploiting distinctive quark-jet vs

gluon-jet features

PRD 81 052011 (2010)

D0 (L=1.0fb⁻¹): $\sigma_{tt} = 6.9 \pm 1.3$ (stat) ± 1.4 (syst) ± 0.4 (lumi) pb CDF(L=2.9fb⁻¹): $\sigma_{tt} = 7.2 \pm 0.5$ (stat) ± 1.0 (syst) ± 0.4 (lumi) pb

Charged Higgs search

Cross section in different channels sensitive to new physics: in SM extension with extended Higgs sector (like MSSM or HDM) t→ H+b can compete with t→ Wb. Strategy: compare number of events in liets, ll and l+tau:

- H+ → tau nu would increase ttbar events identified through taus
- H⁺ → cs would give larger than expected lepton+jets events

Missing energy plus many jets

MET + jets: -alternative way to select tau channels, and recover unidentified e/mu (1/3tau, 1/3e, 1/3mu)

Independent from "lepton+jets" channel

- at least 3 strict identified jets, at least one b-tagged jet
- NN trained against background, NN > 0.8 background estimation:
- b-tag rate/misrate evaluated from data in a 3 jet sample (small signal contamination)sample composition
- Counting experiment count number of b-tagged jet

ttbar in MET+2b-jets

Many new particles can appear here

- Higgs! (ZH→vvbb)
- $\widetilde{b}\widetilde{b} \rightarrow bb\chi^0\chi^0$
- 3rd gen leptoquarks
- technicolor etc.etc.

ttbar cross section measurement here is

- a test of the backgrounds for Higgs and NP
- independent from other measurements → can be combined

Using same strategy as in search for ZH→vvbb:

- Suppress overwhelming QCD background using multivariate technique (NN)
- Isolate the signal from remaining backgrounds, likelihood scan of NN output

≥ 1 b-tag

CDF Run II Preliminary, L = 5.7 fb⁻¹

Total cross section: summary

Good consistency among channels/experiments

Planning to combine CDF and D0 measurements to increase precision

ttbar+jets

ught quark jet Test of QCD prediction, sensitive to NLO effects

Most top events at the LHC will be produced with additional jets → substantial background for many new physics signals

Strategy: simultaneous fit of tt+0jet and tt+1jet

SM cross section is $\sigma_{tt} = 1.79^{+0.16}_{-0.31} pb$ EPJ C59 625 (2009)

 $\sigma_{\text{tt+jet}}$ = 1.6 ± 0.2 (stat)+0.5(syst) pb

Differential cross sections

After measuring total cross sections, measuring differential cross sections is an important step:

- test perturbative QCD in finer details
- probes non-SM production mechanisms
- Lepton+jets mode best here for high purity and large statistics

Search for boosted top quarks

Decays fully contained in jet cone happen with high top Pt (≥400GeV here)

- identification of the W decay and the b quark unfeasible
- jet has mass~Mtop → very different from jets from lighter quarks or gluons
 Cross section for events with Pt(top) ≥ 400GeV is a handful of fb

Set limits on the trace <55 fb @ 95CL (expected <39 fb)

Summary

- Measurement of the <u>total</u> cross section with the Tevatron large dataset allowed
 - understanding of the sample composition fundamental to perform top properties measurements (mass, spin, charge, etc.)
 - precision in xsection measurement higher than (N)NLO
 - comparison among channels to probe exotic decays (H+)
 - estabilishing the ttbar background to new physics searches (ttbar+X, resonant production through Z', low mass Higgs, etc.)
- Studies of <u>differential</u> that xsections probe in a finer way (N)NLO QCD and resonant production
- Searching <u>boosted</u> top quarks allows studies of jets substructure and estabilish tools for searching Higgs and New Physics at the Tevatron/LHC

Summary

- Measurement of the <u>total</u> cross section with the Tevatron large dataset allowed
 - understanding of the sample composition fundamental to perform top properties measurements (mass, spin, charge, etc.)
 - precision in xsection measurement higher than (N)NLO
 - comparison among channels to probe exotic decays (H+)
 - estabilishing the ttbar background to new physics searches (ttbar+X, resonant production through Z', low mass Higgs, etc.)
- Studies of <u>differential</u> that xsections probe in a finer way (N)NLO QCD and resonant production
- Searching <u>boosted</u> top quarks allows studies of jets substructure and estabilish tools for searching Higgs and New Physics at the Tevatron/LHC

Thank you!