

Search for $B \rightarrow \tau v$ at the BABAR experiment

Guglielmo De Nardo for the BABAR collaboration

Napoli University and INFN ICHEP 2010, Paris, 23 July 2010

- Can be used to measure the B meson decay constant f_B assuming V_{ub}
- Vub (exp.+theo) and f_B (theo) uncertainties dominate the SM expectation uncertainty:
 - Using $f_B = 190 \pm 13$ MeV * and $V_{ub} = (3.5 \pm 0.4) \times 10^{-3} ** BF_{SM}(B \rightarrow \tau \nu) = (0.80 \pm 0.20) \times 10^{-4}$

*HPQCD collaboration arXiv:0902.1815v2 ** UTFit and CKM fitter collaborations

Additional tree level contribution from a charged Higgs

- It does not suffer from helicity suppression, but gets the same m₁ dependence from Yukawa coupling
- Branching fraction theoretical expression depends on the NP model

 $\mathcal{B}(B \to l\nu)_{2HDM} = \mathcal{B}(B \to l\nu)_{SM} \times (1 - tan^2 \beta \frac{m_B^2}{m_H^2})^2 \quad \text{W. S. Hou, Phys. Rev. D 48 (1993) 2342.}$ $\mathcal{B}(B \to l\nu)_{SUSY} = \mathcal{B}(B \to l\nu)_{SM} \times (1 - \frac{tan^2 \beta}{1 + \epsilon_0 tan\beta} \frac{m_B^2}{m_H^2})^2$

A.G. Akeroyd and S.Recksiegel J.Phys.G29:2311-2317,2003

• B $\rightarrow \tau \nu$ measurement already allows 90% exclusion plots in the plane of NP parameters M_H × tan β

Past Measurements

BABAR Hadronic tags $\mathcal{B}(B \to \tau \nu) = (1.8^{+0.9}_{-0.8}(\text{stat.}) \pm 0.4 \pm 0.2) \times 10^{-4}$ BABAR Semi-leptonic tags

 $\mathcal{B}(B \to \tau \nu) = (1.7 \pm 0.8 \pm 0.2) \times 10^{-4}$

BELLE Hadronic tags $\mathcal{B}(B \to \tau \nu) = (1.79^{+0.56}_{-0.49} (\text{stat.})^{+0.46}_{-0.51}) \times 10^{-4}$

BELLE Semi-leptonic tags $\mathcal{B}(B \to \tau \nu) = (1.54^{+0.38}_{-0.37}(\text{stat.})^{+0.29}_{-0.31}) \times 10^{-4}$ Phys. Rev. D 77, 011107(R) (2008)

Phys. Rev. D 81,051101(R) (2010)

Phys. Rev. Lett. 97, 261802 (2006)

arXiv:1006.4201[hep-ex]

Hadronic tags

Data Samples

Hadronic tags

- B -> D(*) X and B -> J/ψ X with single mode purity P > 10% (optimized)
- In case of multiple B candidates select the one with smallest |ΔE|
- Fit with a Crystal Ball (correctly reconstructed B)
 + 2 Argus (combinatorial)

Signal Selection

- Combinatorial and continuum background reduction combine 3 variables in a likelihood ratio
 - D momentum, Cos 9 thrust, Thrust magnitude
- Exploit kinematics in the signal side
 - Requirement on CMS momentum for 1 prong modes
 - Combine 4 variables in a Likelihood ratio for $\tau \rightarrow \pi \pi^0$
- Most discriminating variable residual energy in the calorimeter (E_{extra})
 - Defined as the total energy of clusters passing a minimum energy requirement of 60 MeV
 - Used in a maximum likelihood fit to determine the branching fraction
- Optimized aiming at the smallest statistical + systematic uncertainty
 - By means of toy MC experiments

Fit strategy

- Maximum likelihood fit to E_{extra} distribution
- Simultaneously on the four τ decay modes

$$\mathcal{L}_k = e^{-(n_{s,k}+n_{b,k})} \prod_{i=1}^{N_k} \left\{ n_{s,k} \mathcal{P}_k^s(E_{i,k}) + n_{b,k} \mathcal{P}_k^b(E_{i,k}) \right\}$$

$$n_{s,k} = N_{B\overline{B}} \times \epsilon_k \times BF$$

Signal PDF taken from signal MC and corrected for data/MC disagreements

Background PDF from data SB (comb. Background) B+B- MC (peak. comp. only)

9

preliminary

180

140

ē 160

Guglielmo De Nardo - 35th Internation Confere

160

140

E_{extra} validation on double tags

Fit results

• Significant excess of events at low E_{extra}

0.8

1.4 E_{extra} (GeV)

1.2

0.2

0.4

0.6

2 1.4 E_{extra} (GeV)

1.2

0.6

0.4

0.8

Systematic uncertainties

Source of systematics	BF uncertainty $(\%)$
B counting	0.5
Tag B efficiency	5.0
Background PDF	
Signal PDF	1.7
MC statistics	0.8
Electron identification	2.6
Muon identification	4.7
Kaon identification	0.4
Tracking	1.4
Total	14

$$\mathcal{B}(B \to \tau \nu) = (1.80^{+0.57}_{-0.54} \pm 0.26) \times 10^{-4}$$

Analysis with Semi-leptonic tags

Similar technique with semi-leptonic B tags

Results for semi-leptonic tags

 Updated the B → τν measurement to the full BABAR dataset with hadronic B tags

 $\mathcal{B}(B \to \tau \nu) = (1.80^{+0.57}_{-0.54} \pm 0.26) \times 10^{-4}$ preliminary

- Excluding the null hypothesis at the 3.6 σ level
 - Supersedes our previous measurement in Phys. Rev. D 77, 011107(R) (2008)
- Combining with the measurement with semi-leptonic tags we present a single BABAR measurement of

$$\mathcal{B}(B
ightarrow au
u) = (1.76 \pm 0.49) imes 10^{-4}$$
 preliminary

Back up slides

Selection optimization

- We optimized the selection criteria taking into account statistical + largest systematic uncertainty in signal and background PDF
- Fitting toy experiments generated with nominal probability density functions to estimate the expected statistical uncertainties

Variable	$\tau^+ \to e^+ \nu \bar{\nu}$	$\tau^+ \to \mu^+ \nu \bar{\nu}$	$\tau^+ \to \pi^+ \nu$	$\tau^+ \to \rho^+ \nu$
R2	< 0.57	< 0.56	< 0.56	< 0.51
purity	> 10%	> 10%	> 10%	> 10%
L_C	> 0.2	> 0	> 0.3	> 0.45
$p_{trk}^*(\text{GeV}/c)$	< 2.1	< 2	> 1.4	
L_P				> 0.8

mode	$e u ar{ u} (\%)$	$\mu uar{ u}(\%)$	$\pi u(\%)$	ho u(%)
$e \nu \bar{\nu}$	58.1±0.5	0.39 ± 0.06	0.21 ± 0.04	0.01 ± 0.01
$\mu uar{ u}$	$0.02{\pm}0.01$	55.7±0.5	$1.02{\pm}0.09$	$0.04{\pm}0.02$
πu	$0.17 {\pm} 0.05$	$2.8{\pm}0.2$	37.1±0.6	$1.8 {\pm} 0.2$
ho u	$0.33 {\pm} 0.04$	$3.2{\pm}0.1$	$5.8 {\pm} 0.2$	9.6±0.2
other	$0.18{\pm}0.03$	$1.4{\pm}0.1$	$0.74{\pm}0.06$	$2.1{\pm}0.1$
all τ dec.:	10.5±0.5	11.2±0.5	6.0±0.6	3.2±0.3
total:	30.9±1.0			

