

Charged Particle Distributions in DIS and Photoproduction at HERA

Daniel Traynor, ICHEP July 2010

Scaled Momentum Spectra in deep inelastic Scattering at HERA (ZEUS, DESY-09-229 accepted by JHEP)

Observation of the Hadronic Final State Charge Asymmetry in High Q^2 Deep-Inelastic Scattering at HERA (H1, Phys. Lett. B 681 (2009) 125)

Scaled momentum distributions of charged particles in dijet photoproduction at HERA (JHEP08(2009)077)

Transverse Momentum of Charged Particles at low Q^2 at HERA (H1prelim-10-035)

Motivation

• Tests of factorisation and the universality of fragmentation by

- direct tests: Compare the same measurements (e.g. Fragmentation functions) from different experiments (Zeus, HI, CDF, OPAL, etc...) with each other.
- Indirect tests: Compare a variety of measurements with the same theory (Monte Carlo, MLLA, NLO+FF). Monte Carlo and NLO Fragmentation function parameterisations fitted to e⁺e⁻ annihilation data. MLLA parameters taken from global fit to all data.

• Non DGLAP behaviour of parton dynamics

• Go to area of phase space that is expected to be sensitive to DGLAP / BFKL / CCFM differences (low Q2, low x DIS) and compare data to different model predictions.

HERA, ZEUS and HI

electrons and positrons

HI and ZEUS are general purpose detectors with extensive tracking and calorimetry coverage

Usable luminosity per experiment ~500 pb⁻¹

Dijet Photoproduction (Yp) $Q^2 \approx 0 \text{ GeV}^2$ e W Y Jet Jet р

The dijet system used to characterises the event kinematics

virtual photon doesn't carry any energy only longitudinal momentum (P_z) Provides clearest separation between particles from hard scattering and proton remnant. Allows for easy comparison with e⁺e⁻ data

 $\frac{2P_h}{2}$ x_p = As O increases distribution gets softer, i.e. more traeks with small hare of initial scale Xp¹

x_p is the particle momentum in the Breit frame scaled by the energy scale in current region (Q/2).

ZEUS

6

Data

0.44 fb⁻¹

Event Selection

ZEUS

Full perturbative NLO QCD calculation combined with NLO Fragmentation functions which are parameterisations of e⁺e⁻.

NLO calculations do not provide a good description of the data. Slope of the Q^2 dependence, scaling violation, are too small in theory!

Fragmentation effects dominate at low x_p . Hadrons at large x_p expected come from the hard interaction.

At high Q^2 and high x_{BJ} significant contribution from valence quarks. Expect charge asymmetry in quarks from hard interaction. Is it visible after hadronisation?

$$A(x_p) = \frac{D^+(x_p) - D^-(x_p)}{D(x_p)}$$

Charge asymmetry observed, increasing with x_p (also with Q^2 , not shown)

Asymmetry described by Monte Carlo models

The results are consistent with the expectation that at high x_p the asymmetry is directly related to the valence quark content of the proton.

Dijez Phystoproduction (Yp)

Dijet Photoproduction (Yp)

A linear fit using ZEUS data only produces a result that is consistent with the global fit to all data.

When MLLA theory is used to extract a value for Λ_{eff} , the extracted values of Λ_{eff} using only ZEUS data are not consistent with the global fit

Dijet Photoproduction (Yp)

ZEUS

ZEUS γp data shows no dependence on μ , there is a small dependence on θ_c (not shown)

A weak dependence on μ and on θ_c is reported for the CDF data. This could explain the failure of global fit to to match ZEUS data only fit.

Beyond DGLAP (DIS)

Djangoh (CDM) describes new data for whole p_T^* spectra.

Rapgap (DGLAP) is below the data $p_T^* > I \text{ GeV}.$

Cascade (CCFM) is systematically above the data.

Beyond DGLAP (DIS)

Charged particles with $p_T^* < I \text{ GeV}$

Strong sensitivity to hadronisation parameters.

Weak sensitivity to different parton dynamics.

Charged particles with $p_T^* > I GeV$

Weaker sensitivity to hadronisation parameters.

Stronger sensitivity to different parton dynamics.

 η^{\ast} in hadronic centre of mass frame

Beyond DGLAP (DIS)

Tuesday, 13 July 2010

 η^* in hadronic centre of mass frame

Summary

- Charged particle spectra have been measured in DIS and photoproduction at HERA.
- In general the results are found to support the concept of quark fragmentation universality. However, there exists significant differences when comparing NLO QCD predictions to the data.
- The observed charge asymmetry is consistent with that expected from the valence quarks in the proton.
- At low x DIS, the CDM model is found to provide a better description of parton dynamics indicating that the emission of partons is not strongly ordered in k_T.

Backup

Central Tracking Detector $15^{\circ} < \theta < 164^{\circ}$ microvertex detector $7^{\circ} < \theta < 150^{\circ}$

Uranium Scintillator Calorimeter (Electromagnetic and Hadronic) $2.2^{\circ} < \theta < 176.5^{\circ}$

Central Drift Chamber $20^{\circ} < \theta < 165^{\circ}$ silicon vertex detector $30^{\circ} < \theta < 150^{\circ}$

LAr Calorimeter $-1.4 < \eta < 3.4$ convert to angle! SpaCal Calorimeter $153^{\circ} < \theta < 178^{\circ}$

Frame of reference

At low Q^2 (low x_{BJ}) all x_p , asymmetry ~0

As Q^2 increases asymmetry develops at high x_p , low x_p it remains ~0

Monte Carlo models are able to describe the magnitude and evolution of the asymmetry

Tuesday, 13 July 2010

The Gaussian fit method

Peak position, ξ_{peak}

- Fit Gaussian ± 1 around mean.
- $\forall \xi$, independently measure ξ_{peak} .

$$\Lambda_{\rm eff} = rac{E_{\rm Jet} \sin(\theta_c)}{e^{(\sqrt{0.87 + 2\xi_{\rm peak}} - 0.54)^2}}$$
 (@ LO)

Measuring Λ_{eff}

- Only use $\theta_c = 0.23$ energy points:
 - Different θ_c values are correlated;
 - MLLA looses validity at large θ_c .
- Fit equation to all 5 energy points.

$$\Lambda_{\rm eff} = 275 \pm 4 \, ({\rm stat.})^{+4}_{-8} \, ({\rm syst.}) \, {\rm MeV}$$

The MLLA + LPHD fit method

Momentum distribution of partons from a gluon is given by:

•
$$\overline{D}_{g-Jet}^{\lim} \left(\ln \left(\frac{1}{x_{\rho}} \right), Y \right) = \frac{4C_{f}}{b} \Gamma(B) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-B\alpha} \left[\frac{\cosh \alpha + (1-2\zeta) \sinh \alpha}{\frac{4N_{c}}{b} Y \frac{\alpha}{\sinh \alpha}} \right]^{\frac{B}{2}}$$

 $\cdot I_{B} \left(\sqrt{\frac{16N_{c}}{b} Y \frac{\alpha}{\sinh \alpha}} \left[\cosh \alpha + (1-2\zeta) \sinh \alpha \right] \right) \frac{d\tau}{\pi}$
• Valid for: $\ln \left(\frac{1}{x_{\rho} \ll 1} \right) \leq \ln \left(\frac{1}{x_{\rho}} \right) \leq \ln \left(\frac{M_{2j}}{2P_{0}} \right) \quad P_{0} = \text{Upper bound}$

For number of flavours, $N_f = 3$, and number of colours, $N_c = 3$

•
$$C_f = \frac{9}{4}, b = 9, B = 1.247$$

- I_B is the modified Bessel function of order B.
- $\alpha = \alpha_0 + i\tau$, where α_0 is determined by $\tanh \alpha_0 = 2\zeta 1$

•
$$\zeta = 1 - \frac{\ln\left(\frac{1}{x_p}\right)}{Y}$$
 and $Y = \ln\left(\frac{E_{\text{Jet}}\sin(\theta_c)}{\Lambda_{\text{eff}}}\right)$ $\bar{D}_{q-\text{Jet}}^{\lim} = \frac{1}{r}\bar{D}_{g-\text{Jet}}^{\lim}$

< □ > < □ > < □ > < = > < = >

-2

4)4(

12/18