## Charged Particle

# Distributions in DIS 

# and Photoproduction at HERA 

## Daniel Traynor, ICHEP July 2010

Scaled Momentum Spectra in deep inelastic Scattering at HERA
(ZEUS, DESY-09-229 accepted by JHEP)
Observation of the Hadronic Final State Charge Asymmetry in High Q^2 Deep-Inelastic Scattering at HERA (H1, Phys. Lett. B 681 (2009) 125)

Scaled momentum distributions of charged particles in dijet photoproduction at HERA
(JHEP08(2009)077)

## Motivation

- Tests of factorisation and the universality of fragmentation by
- direct tests: Compare the same measurements (e.g. Fragmentation functions) from different experiments (Zeus, HI, CDF, OPAL, etc...) with each other.
- Indirect tests: Compare a variety of measurements with the same theory (Monte Carlo, MLLA, NLO+FF). Monte Carlo and NLO Fragmentation function parameterisations fitted to $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation data. MLLA parameters taken from global fit to all data.
- Non DGLAP behaviour of parton dynamics
- Go to area of phase space that is expected to be sensitive to DGLAP / BFKL / CCFM differences (low Q2, low x DIS) and compare data to different model predictions.


## HERA, ZEUS and HI



electrons and positrons


HI and ZEUS are general purpose detectors with extensive tracking and calorimetry coverage

Usable luminosity per experiment $\sim 500 \mathrm{pb}^{-1}$

Inclusive Deep Inelastic Scattering (DIS)
$\mathrm{Q}^{2}>\mathrm{IGeV}^{2}$


## Dijet Photoproduction ( $\gamma \mathrm{P}$ )

## $\mathrm{Q}^{2} \approx 0 \mathrm{GeV}^{2}$



The dijet system used to characterises the event kinematics

## Inclusive Deep Inelastic Scattering (DIS)



Inclusive Deep Inelastic Scattering (DIS)

## ZEUS




Data
$0.44 \mathrm{fb}^{-1}$

## Event Selection

$10<\mathrm{Q}^{2}<4 \mathrm{I}, 000 \mathrm{GeV}^{2}$ $y>0.04$
Detector Track Selection $|\eta|<1.75$
Pt.lab $>0.15 \mathrm{GeV}$

On the whole the comparison with HI data and with $\mathrm{e}^{+} \mathrm{e}^{-}$ results supports fragmentation universality

Significant differences at high $\mathrm{Q}^{2}$ and low $\mathrm{x}_{\mathrm{p}}$ between ep and $\mathrm{e}^{+} \mathrm{e}$.

Due to Breit frame boost ep experiments can measure the $x_{p}$ spectra down to 0 .

## Inclusive Deep Inelastic Scattering (DIS)



Full perturbative NLO QCD calculation combined with NLO Fragmentation functions which are parameterisations of $\mathrm{e}^{+} \mathrm{e}^{-}$.

NLO calculations do not provide a good description of the data. Slope of the $\mathrm{Q}^{2}$ dependence, scaling violation, are too small in theory!

## Inclusive Deep Inelastic Scattering (DIS)



Fragmentation effects dominate at low $x_{p}$. Hadrons at large $x_{p}$ expected come from the hard interaction.

At high $\mathrm{Q}^{2}$ and high $\mathrm{x}_{\mathrm{BJ}}$ significant contribution from valence quarks. Expect charge asymmetry in quarks from hard interaction. Is it visible after hadronisation?

$$
A\left(x_{p}\right)=\frac{D^{+}\left(x_{p}\right)-D^{-}\left(x_{p}\right)}{D\left(x_{p}\right)}
$$

Charge asymmetry observed, increasing with $\mathrm{x}_{\mathrm{p}}$ (also with $\mathrm{Q}^{2}$, not shown)

Asymmetry described by Monte Carlo models
The results are consistent with the expectation that at high $x_{p}$ the asymmetry is directly related to the valence quark content of the proton.

## Dijet Photoproduction (Yp)

> Data
> $\sim 23,000$ events $\mathrm{L}=359 \mathrm{pb}^{-1}$

## Event Selection

$\mathrm{E}_{\mathrm{T} \text { jet } 1,2} \geq 17 \mathrm{GeV}$
$\left|\eta_{\text {jet } 1,2}\right|<1.0$
$\mathrm{E}_{\mathrm{Tjet}} / \mathrm{E}_{\mathrm{Tjet} 2} \geq 0.8$
$0.9 \pi \leq\left|\Phi_{\mathrm{jet}}-\Phi_{\mathrm{jet} 2}\right|$

$$
\mathrm{E}_{\mathrm{T} \mathrm{Jet} 3} \leq 6 \mathrm{GeV}
$$

$$
\begin{gathered}
\left|\eta_{\text {jet } 3}\right| \leq 2.4 \\
0.2 \leq y \leq 0.8 \\
\mathrm{Q}^{2} \leq 1 \mathrm{GeV}^{2} \\
\mathrm{x}_{\mathrm{Y}} \geq 0.75
\end{gathered}
$$

Detecter Track Selection $P_{\mathrm{T}} \geq 0.15 \mathrm{GeV}$ $|\eta| \leq 1.7$

Select back to back dijets, suppress 3 rd jet. energy scale $\mathrm{E}_{\mathrm{jet}}=\mathrm{M}_{\mathrm{jj}} / 2$

$$
\xi=\ln \left(\frac{E_{\text {jet }}}{\left|p_{\text {track }}\right|}\right)
$$



Opening angle around jet axis $\left(\theta_{\mathrm{c}}\right)$ links tracks to a particular jet (only results with $\theta_{c}=0.23$ considered here )

Fit the $\xi$ distribution with; Gaussian around mean or full MLLA+LPHD theory.

Compare results from $\mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{ep}, \gamma p$ and $\mathrm{p} \overline{\mathrm{p}}$

## Dijet Photoproduction (Yp)



## Dijet Photoproduction (Yp)

ZEUS


Characteristic energy

$$
\text { scale }=\mu
$$

Approximately linear relationship expected between $\xi_{\text {peak }}$ and $\ln \left(\mu \sin \left(\theta_{c}\right)\right)$

A linear fit using ZEUS data only produces a result that is consistent with the global fit to all data.

When MLLA theory is used to extract a value for $\Lambda_{\text {eff }}$, the extracted values of $\Lambda_{\text {eff }}$ using only ZEUS data are not consistent with the global fit

## Dijet Photoproduction (Yp)

ZEUS


ZEUS $\gamma$ P data shows no dependence on $\mu$, there is a small dependence on $\theta_{c}$ (not shown)
A weak dependence on $\mu$ and on $\theta_{c}$ is reported for the CDF data. This could explain the failure of global fit to to match ZEUS data only fit.

## Beyond DGLAP (DIS)



## Beyond DGLAP (DIS)



Djangoh (CDM) describes new data for whole $\mathrm{PT}^{*}$ spectra.

Rapgap (DGLAP) is below the data $\mathrm{PT}^{*}>\mathrm{IGeV}$.

Cascade (CCFM) is systematically above the data.
$\mathrm{PT}^{*}$ in hadronic centre of mass frame


## Beyond DGLAP (DIS)

Charged particles with $\mathrm{PT}^{*}<\mathrm{I} \mathrm{GeV}$
Strong sensitivity to hadronisation parameters.
Weak sensitivity to different parton dynamics.

Charged particles with $\mathrm{PT}^{*}>\mathrm{IGeV}$
Weaker sensitivity to hadronisation parameters.
Stronger sensitivity to different parton dynamics.

## Beyond DGLAP (DIS)



16

Charged particles with $\mathrm{PT}^{*}>\mathrm{IGeV}$

Rapgap (DGLAP) is below the data for most of the phase space.

Djangoh (CDM) gives a better description of the data at low $\mathrm{Q}^{2}$ and low x
$\eta^{*}$ in hadronic centre of mass frame

## Summary

- Charged particle spectra have been measured in DIS and photoproduction at HERA.
- In general the results are found to support the concept of quark fragmentation universality. However, there exists significant differences when comparing NLO QCD predictions to the data.
- The observed charge asymmetry is consistent with that expected from the valence quarks in the proton.
- At low x DIS, the CDM model is found to provide a better description of parton dynamics indicating that the emission of partons is not strongly ordered in $\mathrm{k}_{\mathrm{T}}$.


## Backup



Central Tracking Detector $15^{\circ}<\theta<164^{\circ}$ microvertex detector

$$
7^{\circ}<\theta<150^{\circ}
$$

Uranium Scintillator Calorimeter (Electromagnetic and Hadronic)

$$
2.2^{\circ}<\theta<176.5^{\circ}
$$



Central Drift Chamber $20^{\circ}<\theta<165^{\circ}$
silicon vertex detector $30^{\circ}<\theta<150^{\circ}$

LAr Calorimeter

$$
-1.4<\eta<3.4 \text { convert to angle! }
$$

SpaCal Calorimeter $153^{\circ}<\theta<178^{\circ}$

## Frame of reference

Born level


0'th order $\alpha_{s}$
no hard QCD radiation
One jet in Lab frame


No ET,
No jets in Breit frame!
order $\alpha_{s}{ }^{2}$, NLO pQCD


In the Breit frame, QCD radiation generates $\mathrm{E}_{\mathrm{T}}$


## The Gaussian fit method



$$
E_{\text {Jet }}=23 \mathrm{GeV}: \theta_{\mathrm{c}}=0.23: \xi=\ln \left(1 / \mathrm{x}_{\mathrm{p}}\right)
$$

## Peak position, $\xi_{\text {peak }}$

- Fit Gaussian $\pm 1$ around mean.
- $\forall \xi$, independently measure $\xi_{\text {peak }}$.

$$
\begin{equation*}
\Lambda_{\mathrm{eff}}=\frac{E_{\mathrm{Jet}} \sin \left(\theta_{c}\right)}{e^{\left(\sqrt{0.87+2 \xi_{\text {peak }}}-0.54\right)^{2}}} \tag{@LO}
\end{equation*}
$$

- Only use $\theta_{c}=0.23$ energy points:
- Different $\theta_{c}$ values are correlated;
- MLLA looses validity at large $\theta_{c}$.
- Fit equation to all 5 energy points.

$$
\left.\Lambda_{\text {eff }}=275 \pm 4 \text { (stat. }\right)_{-8}^{+4} \text { (syst.) } \mathrm{MeV}
$$



## The MLLA + LPHD fit method

Momentum distribution of partons from a gluon is given by:

- $\bar{D}_{\mathrm{g}-\mathrm{Jet}}^{\lim }\left(\ln \left(\frac{1}{x_{p}}\right), Y\right)=\frac{4 C_{f}}{b} \Gamma(B) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-B \alpha}\left[\frac{\cosh \alpha+(1-2 \zeta) \sinh \alpha}{\frac{4 N_{c}}{b} Y_{\overline{\sinh \alpha}}}\right]^{\frac{B}{2}}$

$$
I_{B}\left(\sqrt{\frac{16 N_{c}}{b} Y \frac{\alpha}{\sinh \alpha}[\cosh \alpha+(1-2 \zeta) \sinh \alpha]}\right) \frac{d \tau}{\pi}
$$

- Valid for: $\ln \left(\frac{1}{x_{p} \ll 1}\right) \leq \ln \left(\frac{1}{x_{p}}\right) \leq \ln \left(\frac{M_{2 j}}{2 P_{0}}\right) \quad P_{0}=$ Upper bound

For number of flavours, $N_{f}=3$, and number of colours, $N_{c}=3$

- $C_{f}=\frac{9}{4}, b=9, B=1.247$.
- $I_{B}$ is the modified Bessel function of order B.
- $\alpha=\alpha_{0}+i \tau$, where $\alpha_{0}$ is determined by $\tanh \alpha_{0}=2 \zeta-1$
- $\zeta=1-\frac{\ln \left(\frac{1}{x_{p}}\right)}{Y}$ and $Y=\ln \left(\frac{E_{\mathrm{Jet}} \sin \left(\theta_{c}\right)}{\Lambda_{\text {eff }}}\right)$

$$
\bar{D}_{\mathrm{q}-\mathrm{Jet}}^{\mathrm{lim}}=\frac{1}{r} \bar{D}_{\mathrm{g}-\mathrm{Jet}}^{\mathrm{lim}}
$$

