

Inclusive Photoproduction of $\rho^{o},~K^{\star o}$ and ϕ Mesons at HERA

Andrei Rostovtsev (ITEP)

on behalf of H1 Collaboration

Published in H1 Collab., Phys. Lett. B 673, 119-126

ICHEP 2010, 23d July, Paris

ep kinematics

energy c.m.: $\int s = 300-320 \text{ GeV}$ hadronic energy: $W = m(\gamma^*p)$ photon virtuality : Q^2 two regions: $Q^2 \approx 0 \text{ GeV}^2$ — photoproduction $Q^2 > 1 \text{ GeV}^2$ — electroproduction (DIS)

Motivation

give a unique opportunity to make comparison of RHIC results with simpler interaction system (HERA)

 ρ^{0} , $K^{*0}(892)$, $\phi(1020)$ measurements at HERA help to study hadronisation

Selection

Main selection criteria for event:

- H1 data 2000 with \mathcal{L} = 36.5 pb⁻¹
- Photoproduction $Q^2 < 0.01 \text{ GeV}^2$ with e' in ET (electron tagger)
- 174 < W < 256 GeV \Rightarrow <W> = 210 GeV
- Trigger requires at least 3 tracks in the Central Tracker with $p_{\rm T}$ > 0.4 GeV

 $ho^0
ightarrow \pi^+\pi^ K^{\star 0}
ightarrow K\pi$ $\phi
ightarrow K^+K^-$

$\rho^0, \mathbf{K^*} \text{ and } \boldsymbol{\phi} \text{ signal}$

Bose-Einstein Correlations (BEC)

distortion of ρ^0 mass spectrum due to BEC

A modification of ρ^0 signal produced in γp collisions is described by taking into account Bose-Einstein correlations in Monte Carlo

 ρ^0 , K* and ϕ : cross section measurement

 $Q^2 < 0.01 \text{ GeV}^2$ & 174 < W < 256 GeV, $p_T > 0.5 \text{ GeV}$ & $|y_{lab}| < 1$:

$$\begin{array}{ll} \sigma^{\gamma p}{}_{vis}(\gamma p \to \rho^{0} X) &= 25600 \pm 1800 \pm 2700 \text{ nb} \\ \sigma^{\gamma p}{}_{vis}(\gamma p \to K^{\star 0} X) &= 6260 \pm 350 \pm 860 \text{ nb} \\ \sigma^{\gamma p}{}_{vis}(\gamma p \to \phi X) &= 2400 \pm 180 \pm 340 \text{ nb} \end{array}$$

Hadron photoproduction at H1

All inclusive photoproduction cross sections measured at H1 are described by power law distribution with the same n = 6.7 calculated from charged hadrons

ρ^0 , K* and ϕ : cross section

ρ^0 , K* and ϕ : power law distribution

is extrapolated cross section in all p_T range

 ρ^{0} , K* and ϕ : cross section fit parameters

$\langle E_{T} \rangle = \langle E_{T}^{kih} + m_{B} \rangle$	$\langle P_{I} \rangle = \sqrt{\langle E_{I} \rangle^{2} - n_{0}^{2}}$
X X	

		ρ^0	$(K^{*0} + \overline{K}^{*0})/2$	ϕ
γp	$\langle d\sigma/dy_{lab} \rangle_{ y_{lab} <1}$ [nb]	23600 ± 2700	5220 ± 600	1850 ± 230
	$E_{T_0}/n = T [GeV]$	0.151 ± 0.011	0.166 ± 0.012	0.170 ± 0.012
_	$\langle E_T \rangle$ [GeV]	1.062 ± 0.018	1.205 ± 0.020	1.333 ± 0.022
	$\langle E_T^{kin} \rangle$ [GeV]	0.287 ± 0.018	0.313 ± 0.020	0.314 ± 0.022
	$\langle p_T angle$ [GeV]	0.726 ± 0.027	0.810 ± 0.030	0.860 ± 0.035
pp	$\langle p_T \rangle_{pp} \; [{ m GeV}]$	0.616 ± 0.062	0.81 ± 0.14	0.82 ± 0.03
Au-Au	$\langle p_T angle_{AuAu}$ [GeV]	0.83 ± 0.10	1.08 ± 0.14	0.97 ± 0.02

- ρ^0 , K* and ϕ are produced with about the same value of the average $\langle E_T^{kin} \rangle \Rightarrow$ supports a thermodynamic picture of hadronic interactions
- n is described by Monte Carlo while T is not (non pQCD)
- $< p_{T} >$ in H1 is in agreement with RHIC pp and is lower than RHIC AuAu

11

$\rho^{0},$ K* and $\phi^{:}$ comparison with RHIC

Remarkable agreement between production rates

in pp and photoproduction

The ratio of the production cross-sections $R(\phi/K^*)$ measured in γp is in agreement with pp results and below that for AuAu measured at about the same collision energy at RHIC

Summary

Light $\rho(770)^{0}$, K*(892)⁰ and $\phi(1020)$ mesons photoproduction at HERA:

- first measurement in photoproduction at HERA
- the description of the ρ^0 shape of the meson is improved by taking Bose-Einstein correlations into account
- · $p_{\mathsf{T}}\text{-}\mathsf{spectra}$ are described by power law distribution
- ρ^0 , K* and ϕ are produced with about the same value of $\langle E_T^{kin} \rangle$ \Rightarrow support a thermodynamic picture of hadronic interactions
- comparison with RHIC results
 - The ratio of the production cross-sections R(ϕ/K^*) measured in γp is in agreement with pp results at about the same collision energy at RHIC
- $\boldsymbol{\cdot}$ universality in $p_{T}\text{-spectra}$ of hadrons at H1 is observed

ρ^0 , K* and ϕ : visible kinematical range

All mesons are analyzed in following:

- |y| < 1 in 7 p_T bins: 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7 bin 0.5-0.75 0.75-1. 1.-1.5 1.5-2. 2.-3. 3.-4. 4.-7. GeV Extra cuts for mesons: K*0: 1 bin: Kaon dE/dx ident. && $\cos\theta^* < 0$; 2-3 bin: Kaon dE/dx ident. bin p_{τ} : 0.-0.25 GeV is excluded due to non description DATA and MC bin p_T : 0.25-0.5 GeV is excluded due to big Bàckground for K*⁰ and small φ meson reconstructed efficiency - p_T > 0.5 GeV in 4 y bins: polarization 1 bin 2 bin 3 bin 4 bin **V***0 -1.:-0.5 -0.5-0. 0.-0.5 0.5-1. Extra cuts for mesons: K^{*0} : 1-4 bin: Kaon dE/dx ident. && cos $\theta^* < 0$ ♦: 1-4 bin: Kaon dE/dx identification y - rapidity of mesons π p_{T} - transverse momentum of mesons

Fit Procedure

 $ho^0
ightarrow \pi^+\pi^ K^{\star 0}
ightarrow K\pi$ $\phi
ightarrow K^+K^-$

Fit function: F(m) = S(m) + R(m) + B(m)

Signal S(m) = convolution of BW(m) and res(m, m') rel. Breit-Wigner BW(m) = $Amm_0\Gamma(m)/[(m^2-m_0^2)^2 + m_0^2\Gamma^2(m)]$ $\Gamma(m) = \Gamma_0(q/q_0)^{2l+1}m_0/m$ resolution function res(m, m') = $1/[2p] \cdot \Gamma_{res}/[(m-m')^2 + (\Gamma_{res}/2)^2]$

 $\begin{array}{ll} \text{reflection } \mathsf{R}(\mathsf{m}) & \\ & \text{for } \rho^0 & \\ & \text{for } \rho^0 & \\ & \text{for } \mathsf{K}^{\star 0} & \\ & \rho^0 \to \pi^{\star} \pi^{-}, \ \omega \to \pi^{\star} \pi^{-}(\pi^0), \ \varphi \to \mathsf{K}^+\mathsf{K}^- \\ & \text{and self-reflection } \mathsf{K}^{\star 0} \to \mathsf{K}\pi \\ & \text{for } \varphi & \\ & - \end{array}$

combinatorial background B(m): for ρ^0 and K*⁰: B(m) = {M($\pi^{\pm}\pi^{\pm}$) or M(K[±] π^{\pm}) } •{Pol(2-3) or ($a_1+a_2\cdot x$)•exp(- $a_3\cdot x-a_4\cdot x^2$)} for ϕ : B(m) = $b_1 \cdot (m^2 - 4m_{\kappa}^2)^{b_2} \cdot exp(-b_3\cdot m)$

$\rho^{0},$ K* and $\phi :$ cross section calculation

Invariant differential cross section:		Differential cross section:					
1	$d^2\sigma^{\gamma p}$	N	$d\sigma^{\gamma p}$	N			
π	$dp_T^2 dy_{lab}$	$= \overline{\pi \cdot \mathcal{L} \cdot BR \cdot \Phi_{\gamma} \cdot \epsilon \cdot \Delta p_T^2 \cdot \Delta y_{lab}}$	dy_{lab}	$\mathcal{L} \cdot BR \cdot \Phi_{\gamma} \cdot \epsilon \cdot \Delta y_{lab}$			
	N – number of mesons from fit Δp_T^2 and Δy_{lab} – bin widths \mathcal{L} = 36.5 pb ⁻¹ Φ_γ = 0.0127 – photon flux BR = 1. for ρ^0 , 0.67 for K* ⁰ and 0.49 for ϕ						
$\varepsilon = \varepsilon_{rec} \cdot \mathcal{A}_{etag} \cdot \mathcal{A}_{3} \cdot \varepsilon_{trig} - efficiency$							
	reco	nstruction efficiency for the meso	n e _{rec} vari «	ies from 45% to 90% (using Monte Carlo)			

positron tagger acceptance \mathcal{A}_{etag} = 48.5% trigger acceptance \mathcal{A}_3 varies from 50% to 95% (using Monte Carlo) trigger efficiency $\varepsilon_{trig} \sim 90\%$ (using Monitor Triggers)

The HERA Collider

