

GEORG-AUGUST-UNIVERSITÄT Göttingen

The physics of top, W and Z

from LHC, Tevatron, HERA

Elizaveta Shabalina II. Physikalisches Institut, Universität Göttingen

Thanks to

 D.Denisov, T.Schwarz, F.Margaroli, C.Schwanenberger, F.Deliot, J.Stark, L.Nodulman, M.Lancaster, K.Krueger, A.Heinson, R.Hawkings,
 W.Verkerke, F.-P.Schilling, M.Verzocchi, G.Bernardi, M.Grunewald, LEP Electroweak working group and all speakers of track 02 session

ICHEP 2010 - Paris, France - July 22-28 2010

W, Z and top quark

July 26, 2010

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

2

W and Z production

Dibosons

W mass and width

The top quark

Top quark production top quark pairs electroweak single top quark

Top quark properties mass width forward-backward asymmetry spin correlations

Searches in top quark sector

Electroweak fit

Many more exciting results were presented. This is just a short summary...

W and Z observation at LHC

Measurements agree between electron and muon channels and with the NNLO calculation

July 26, 2010

W distributions at LHC

W+jets

 $\sqrt{s} = 7 \text{ TeV}$

 $\sqrt{s} = 7 \text{ TeV}$

L dt = 198 nb⁻¹

W-

CMS preliminary 2010

 $W \rightarrow \mu \overline{\nu}$

🗕 data

EWK

Splitting by charge

At LHC $\sigma(W^+) > \sigma(W^-)$

80

60

40

20

0

NNLO, MSTW08 68% CL prediction

 1.43 ± 0.04

20

40

60

 $\sqrt{s} = 7 \text{ TeV}$

80

100 120

M_T [GeV]

number of events / 5

√s = 7 TeV

L dt = 198 nb

CMS preliminary 2010

 W+jets - main background for top pair production in I+jets channel
 Its understanding is a key to top physics analyses

CMS preliminary 2010

 $W^* \rightarrow u^* v$

40

CMS preliminary

 $\mathbf{W} \rightarrow \mu v$

 $W \rightarrow e_{V}$

20

60

 $L \, dt = 198 \, nb^{-1}$

1.69 ± 0.12 _{stat} ± 0.04 _{syst}

1.26 ± 0.10 _{stat} ± 0.05 _{syst}

 $W \rightarrow I_V$ (combined)

 $1.51 \pm 0.08_{stat} \pm 0.04_{svs}$

80

100

M_T [GeV]

120

 $\sigma(W^+)/\sigma(W^-)$

ICHEP2010

⊢

 $\mathsf{R}^{0}_{+,-} = \sigma(\mathsf{pp} \xrightarrow{0.5} \mathsf{W}^{+} + \mathsf{X} \xrightarrow{1} \mathsf{I}^{+} v + \mathsf{X}) / \sigma(\overset{1.5}{\mathsf{pp}} \xrightarrow{} \mathsf{W}^{-} + \mathsf{X} \xrightarrow{2} \mathsf{I}^{-} \overline{v} + \mathsf{X})$

data

EWK

QCD

100

80

60

40

20

0

number of events / 5 GeV

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Z/γ^* differential distributions

Tuesday, July 27, 2010

Forward-backward charge asymmetry

e forward of e⁺e⁻ pair Presence of both vector and axial-vector couplings of W and Z bosons to quarks θ A_{FB} - relative strengths of couplings Sensitive to e+ backward Z-quark couplings: a_u, v_u, a_d, v_d $A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$ Z-electron couplings: a_e, v_e weak mixing angle $\sin^2\theta_W$ $\frac{d\sigma}{d\cos\theta} = A(1 + \cos^2\theta) + B\cos\theta$ I.I fb[·] 4.1 fb⁻¹ $\sin^2 \theta_W^{\text{eff}} = 0.2326 \pm 0.0018(\text{stat}) \pm 0.0006(\text{syst})$ Forward-Backward Asymmetry, Acc ₹ 0.8 CDF Run II Preliminary with 4.1fb 0.23153 ± 0.00016 lepton couplings 0.6 0.4 0.23099 ± 0.00053 0.2 A(P) 0.23159 ± 0.00041 A, (SLD) 0.23098 ± 0.00026 Pythia prediction -0.2 Unfolded (stat.+syst. Unfolded (stat. only) lepton and quark couplings 0.23221 ± 0.00029 -0.4 0.23220 ± 0.00081 -0.6 Q^{had} 0.2324 ± 0.0012 -0.8 0.2326 ± 0.0019 60 70 100 400 500 2 Mag (GeV/c² 200 300 0.23 0.232 0.234 0.236 invariant mass of e⁺e⁻ pair sin² 0 lept

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

rest frame

W production at HERA

 \Box Events with isolated lepton and high P_T^{miss}

dominated by SM single W production

 \square excess in earlier HI data at high P_T^X

Combined HI+ZEUS, 0.98 fb⁻¹

σw=1.06±0.16(stat)±0.07(syst) pb

SM theory: $\sigma_W = 1.27 \pm 0.19$ pb

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

July 26, 2010

W production at HERA

July 26, 2010

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Dibosons

Diboson physics

- Probe of electroweak sector of the standard model
 - cross sections
 - gauge boson couplings

Background for Higgs searches

- ▶ high mass Higgs (M_H>135 GeV) H→WW
- ► low mass Higgs ($M_H < 135 \text{ GeV}$) WH → Ivbb

Exercise multivariate analysis techniques used for Higgs searches

Charged Triple Gauge Couplings

- probed by WW, WZ, WY
- general Lagrangian: 14 parameters
- EM gauge invariance and CP conservation

5 TGC parameters: $g_1^Z, K_Y, K_Z, \lambda_Y, \lambda_Z$

$$p$$
 =1 in SM W,Z =0 in SM
 \overline{q} γ, Z, W W, Z \overline{q} W, Z

SU(2)_L \otimes U(1)_Y, 3 parameters: $\Delta \kappa_Z = \Delta g_1^Z - \Delta \kappa_Y \tan^2 \theta_W, \lambda = \lambda_Y = \lambda_Z$

- Neutral Triple Gauge Couplings
 - probed by ZZ, Zγ
 - general Lagrangian: 8 parameters
 - CP conservation

4 TGC parameters: h_3^{γ} , h_3^{Z} , h_4^{γ} , h_4^{Z}

all zero in SM

Observation of diboson signals

All diboson signals observed at Fermilab by both CDF and D0 in many different final states

July 26, 2010

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

11

Zy production

- SM production through ISR and FSR
- \Box Z \rightarrow ee γ , $\mu\mu\gamma$, $\nu\nu\gamma$ (5 fb⁻¹)
- Cross sections in good agreement with standard model

Z/

 \Box Photon E_T spectra used to set limits on TGC

WZ production

Triple lepton final state (IIIV) Two different techniques Events/10.0 6.0 fb⁻¹ reduced $\sigma_{WZ} = 4.1 \pm 0.7 \text{ pb}$ uncertainty 5.9 fb⁻¹ $\sigma_{WZ} = 3.7 \pm 0.8 \text{ pb}$ $\sigma_{WZ} = 3.9^{+1.1}_{-0.9} \text{ pb}$ 4.1 fb⁻¹ Extract limit on WWZ couplings from $Z p_T$ distribution ΔK_Z Δg_1^{\perp} λ_7 -0.075, 0.093

-0.053, 0.156

Most stringent limits from direct

study of WZ production

July 26, 2010

0

0

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

0

-0.376, 0.686

ZZ production

 $\Box \quad ZZ \rightarrow |||'|'$

• clean but very small signal ($\sigma \cdot Br \sim 1\%$)

NLO theory: $\sigma_{ZZ} = 1.4 \pm 0.1 \text{ pb}$

Events in $\mathcal{L} = 4.8 \text{ fb}^{-1}$				
Signal	$4.68 \pm 0.02(stat.) \pm 0.76(syst.)$			
$Z(\gamma)$ +jets	$0.041 \pm 0.016(stat.) \pm 0.029(syst.)$			
Total expected	$4.72 \pm 0.03(stat.) \pm 0.76(syst.)$			
Observed	5			

 $\sigma_{ZZ} = 1.56^{+0.80}_{-0.63}(\text{stat}) \pm 0.25(\text{syst}) \text{ pb}$ 5.7 σ significance

- first measurement in IIVV final state at hadron colliders
- Iarge Z+jets background

 $\sigma_{ZZ} = 2.01 \pm 0.97$ (total)pb

 $\sigma_{ZZ} = 1.60 \pm 0.65$ (total)pb

4.8 fb⁻¹

CDF Run II Preliminary

20/140 0/140 Z H20

subleading I

W 80

 $L dt = 4.8 \text{ fb}^{-1}$

ZZ

* Data

Z(y)+jets

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

2.7 fb⁻¹

Tuesday, July 27, 2010

July 26, 2010

W mass and width

Top, W and Higgs masses

$$M_{W} = \sqrt{\frac{\pi\alpha}{\sqrt{2}G_{F}}} \frac{1}{\sin\theta_{W}\sqrt{1-\Delta r}}$$
$$\cos\theta_{W} = \frac{M_{W}}{M_{Z}}$$

- W mass has quadratic dependence on top mass and logarithmic on Higgs mass through radiative corrections
- Precise measurements of W mass and top quark mass are essential for
 - testing consistency of the standard model
 - Predicting Higgs mass
 - Further testing standard model if Higgs is found

$$\Delta r_{Higgs} \sim \ln(m_{H}^{2})$$

July 26, 2010

Tuesday, July 27, 2010

W mass and width

July 26, 2010

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

The top quark

The top quark

- Needed in theory as isospin partner of b-quark
- Properties well defined by SM
- Unknown top quark mass

- The heaviest fundamental particle with unique properties
 - Large coupling to Higgs boson (~I)
 - important role in electroweak symmetry breaking?
 - short lifetime: decays before fragmenting $\tau \approx 5 \times 10^{-25} s << \Lambda_{QCD}^{-1}$

The most probable place for new physics to show up?

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

July 26, 2010

19

What do we know about top?

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

What do we know about top?

Top quark production top quark pairs electroweak single top quark

Top quark production and decay

- Main mechanism: pair production via strong interaction
 - Tevatron: qq
 (85%), σ=7.46 pb
 - LHC@7 TeV: gg (~90%),
 σ=160.8 pb
 - theoretical uncertainty ~9%

NNLO_{approx} for m_t = 172.5 GeV PRD 80, 054009 (2009)

W decay mode defines top pair final state

>5 fb⁻¹ of data, ~3,000 b-tagged top candidates per Tevatron experiment

July 26, 2010

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Top quark production and decay

- Main mechanism: pair production via strong interaction
 - Tevatron: qq
 (85%), σ=7.46 pb
 - LHC@7 TeV: gg (~90%),
 σ=160.8 pb
 - theoretical uncertainty ~9%

W decay mode defines top pair final state small rate, high background backgrounds: multijet,W+jets high rate, high background main background: multijet

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

July 26, 2010

Top pair cross section

l+jets channel

Methods:

- kinematical information
- b-jet identification

 First step in understanding selected top quark sample

Test of theoretical QCD calculations

- Limited by systematics, luminosity dominates at ~6%.
- Take ratio to Z cross section: trade for Z theory uncertainty

Combined topological and b-tagged $\sigma_{t\bar{t}} = 7.70 \pm 0.52$ (total) pb

7% relative precision, 9% with luminosity uncertainty

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

July 26, 2010

Boosted top quarks

- First measurement of this kind at Tevatron
- Important for LHC
- High pT top quarks can originate from decay of heavy objects

Events with leading jet PT>400 GeV

 $\sigma_{t\bar{t}}$ < 54 fb for top quark p_T>400 GeV

July 26, 2010

Cross sections summary

- Measured in all channels but Thad Thad
- Agree between channels and methods

Consistent with theory prediction Challenges its precision

Tuesday, July 27, 2010

Cross sections summary

- Measured in all channels but Thad Thad
- Agree between channels and methods

Consistent with theory prediction Challenges its precision

Theoretical contributions: P.Uwer, N.Kidonakis, M.Neubert, P.Ruiz-Femenia

July 26, 2010

Top pair candidates at LHC

- Top physics requires excellent performance of all components
 - demonstrated by Atlas and CMS
- Impressive agreement between data and simulation

critical for b-jet identification!

- Several top pair candidate events
- \Box example: eµ event
 - 3 jets with p_T>20 GeV, H_T=196 GeV, E_T^{mis} = 77 GeV
 - one identified as b-jet

July 26, 2010

Top pair candidates at LHC

78 nb⁻¹ Events 10² Data CMS Preliminary _Z/γ*→I⁺ľ 78 nb⁻¹ at√s=7 TeV tw Events with ee/µµ/e µ $\Box VV$ **Ζ/**γ*→τ⁺τ⁻ W→hv 10 t other t t signal 10⁻¹ 10^{-2} 10⁻³ 2 3 0 1 >4 Number of jets 254 nb⁻¹ Small luminosity Events Data CMS Preliminary <mark></mark>Z/γ*→I⁺Γ 254 nb⁻¹ at√s=7 TeV Single top not enough signal Events with ee/µµ/eµ $\square VV$ **Z**/γ*→τ⁺τ⁻ W→lv yet tt signal 0.8 But... ready to do 0.6 the measurement 0.4 ttba 0.2

0

0.5

1 1.5

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Number of b-tagged jets

Top pairs at LHC

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

July 26, 2010

28

Electroweak top production

- Predicted 10 years before top discovery
 - s- and t-channels
- Observed by CDF and D0 in 2009, 14 years after top discovery
 - small cross section
 - Iarge background with large uncertainties
 - multivariate techniques necessary

S.Willenbrock, D. Dicus, Phys. Rev. D34, 155 (1986); S Cortese and R Petronzio, PLB 253, 494 (1991)

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

July 26, 2010

Top quark properties mass width forward-backward asymmetry spin correlations

Top quark mass measurement

The most powerful method: matrix element method

- Calculate probability for event to be signal or background as a function of top mass
- Multiply event probabilities to extract the most likely mass

I+jets channel

Top mass and jet energy scale extracted simultaneously from maximum likelihood fit to data

$$\Delta_{\rm JES} = 0.15 \pm 0.18 \, \sigma$$
 5.6 fb⁻¹

 m_{top} =173.0±0.7(stat)±1.1(syst) GeV ±1.2(total) GeV

the most precise single measurement: ±0.7%

July 26, 2010

Tevatron mass combination

Mass of the Top Quark			δm _{tep}	
CDF-I dilepton	167.4 ±11.4 (±10.3 ± 4.9)		Systematic source	(GeV)
DØ-I dilepton	168.4 ±12.8 (±12.3 ± 3.6)	statistical	ilES	0.46
DØ-II dilepton *	$170.6 \pm 3.8 (\pm 2.2 \pm 3.1)$ $174.7 \pm 3.8 (\pm 2.9 \pm 2.4)$	b iot rosponso		0.21
		D-jet response	ajes	0.21
	170.1±7.4 (±5.1±5.3)	b-jet energy scale	bJES	0.20
CDF-II lepton+jets *	$173.0 \pm 1.2 \ (\pm 0.6 \pm 1.1)$	modeling uncertainties	cJES	0.13
DØ-II lepton+jets *	173.7 ± 1.8 (± 0.8 ± 1.6)	residual JES	dJES	0.19
CDF-I alljets	186.0 ±11.5 (±10.0 ± 5.7)	detector response	rIES	0.15
CDF-II alljets	$174.8 \pm 2.5 (\pm 1.7 \pm 1.9)$ $175.3 \pm 6.9 (\pm 6.2 \pm 3.0)$		Lepton p _T	0.10
Tevatron combination *	$173.3 \pm 1.1 (\pm 0.6 \pm 0.9) \\ (\pm stat \pm syst)$	ISR/FSR, PDF, NLO	Signal model	0.19
150 160 170 1	180 190 200		Background	0.23
m_{top} (GeV/c ²)			Fit	0.11
-172.2 + 1/(++++)		showering model	MC generator	0.40
$m_{top} - 173.3 \pm$	I.I (total) Ge	V	Color reconnection	0.39
Measurement in different channels consistent with each other		Multiple interactions	0.08	
Different methods produce consistent results		Total	1.06	

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

July 26, 2010

Probing CPT

Is top quark mass equal to anti-top quark mass?

Drop assumption $m_t = m_{\overline{t}}$ in top mass measurement

[∧ 95] 175 ⊑_170

165

160

- Extension of ME mass analysis
- $\Box m_t, JES \rightarrow m_{t,} m_t$

(b) µ+jets DØ, 1 fb⁻¹

175 180

m, [GeV]

First measurements of mass difference of bare quarks

variables: Δm_{reco} and $\Delta m_{reco(2)}$

antitop

top

 $\Delta M_{top} = 3.8 + - 3.7 \text{ GeV/c}^2$ PRL 103, 132001 (2009)

165

170

 $\Delta M_{top} = -3.3 + -1.4(stat.) + -1.0 (syst.) GeV/c^2$

Template method

July 26, 2010

E.Shabalina – The physics of top, W and Z – ICHEP 2010 - Paris

Tuesday, July 27, 2010

33

Top quark width

Standard Model: $\Gamma_t \sim 1.5$ GeV at NLO for $m_t = 172.5$ GeV Additional decay modes: $t \rightarrow H^+b$, $t \rightarrow dW^+$, $t \rightarrow sW^+$?

Indirect measurement

- □ use single top t-channel cross section
- combine with measured branching ratio
- assumption: coupling in top production and decay is the same

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

July 26, 2010

Forward-backward asymmetry

Reconstructed Top Rapidity (Lab)

Data
 tī + Bkg
 Bkg

CDF II Preliminary

250 backward

events

350

300

200

150

A_m^{Duta} = 0.073 ± 0.028

 $A_{fb}^{fl+6hg} = -0.019 \pm 0.0025$ $A_{fb}^{Signal} = -0.0085 \pm 0.0021$

 $h_0 = -0.054 \pm 0.0082$

forward

events

- LO: top quark production angle is symmetric with respect to beam direction
- NLO: asymmetry due to interference effects

|+jets events, pp rest frame $A_{fb} = \frac{N(-Q \times Y_{had} > 0) - N(-Q \times Y_{had} < 0)}{N(-Q \times Y_{had} > 0) + N(-Q \times Y_{had} < 0)}$

Spin correlations

Flight directions of top decay products carry information about top polarization at production

Searches in top quark sector

Selected searches in top sector

Tuesday, July 27, 2010

38

Electroweak fit

EW fit constraints

July 26, 2010

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

40

EW fit constraints

M_H<158 GeV ignoring direct limit

M_H<185 GeV including 114 GeV LEP limit

EW fits alone without theory uncertainties

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

July 26, 2010

41

EW fit: future

Note: new direct Higgs exclusion limit was not propagated to this plot!

July 26, 2010

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

42

Conclusions and outlook

- Precision measurements in top quark sector at Tevatron
 - top pair production cross section uncertainty smaller than theoretical one
 - top mass uncertainty is approaching I GeV
 - Precision of Mw measurement of 15 MeV is desirable
- Measurements of new top quark properties (forward-backward asymmetry, spin correlations) are now available and become to be sensitive
- Diboson signatures are well established at Tevatron
- First EW gauge boson measurements from LHC
 - CMS and Atlas demonstrated their readiness for exciting W, Z and top quark physics

Tevatron and LHC are collecting data: more exciting physics is ahead of us

Tuesday, July 27, 2010

Backup

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

44

Couplings at HERA

3

 a_q, v_q

Ζ

Extend NLO QCD fits of NC/CC HERA data to fit also the u- and d-quark couplings to Z

much improved precision due to polarized HERA data
 will further improve with HI & ZEUS combination

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Tuesday, July 27, 2010

July 26, 2010

Z/γ^* differential distributions

- colorless and low background state
- excellent ground for testing OCD
- important background for many processes: important to model

 Z/γ^* rapidity distribution sensitive to PDF

momentum fraction carried by partons

 $\sigma = 256.6 \pm 0.7(\text{stat}) \pm 2.0(\text{syst}) \text{ pb}$ $\sigma(y>0) = 256.4 \pm 1.0(stat) \text{ pb}$ $\sigma(y<0) = 256.9 \pm 0.9(\text{stat.}) \text{ pb}$

July 26, 2010

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris

Data/Theory

1.1

Charge asymmetry

- W[±] produced through valence quarks (ūd or ud)
- u-quark tends to carry higher proton momentum fraction than d
- W+(W⁻) produced preferably in the direction of proton(antiproton) beam

consistent results between electron and muon channels and with CDF

measure the asymmetry of W decay products

A(y_W)→A(η_μ):
$$A(η_μ) = \frac{N_{μ^+}(η) - N_{μ^-}(η)}{N_{μ^+}(η) + N_{μ^-}(η)}$$

 \Box high η and low muon p_T: dominated by V-A asymmetry of W decay

high muon pT: dominated by W production asymmetry

experimental uncertainties smaller than PDF uncertainties in most η bins

July 26, 2010

VV production

CDF RunII Prelimina 3.5 fb⁻¹ WW+WZ+ZZ Data (3.5 fb⁻¹) EWK Uncertaint no explicit requirement on charged lepton Iarge missing E_T+jets $\sigma_{VV} = 18.0 \pm 3.7(\text{stat} + \text{syst}) \pm 1.1(\text{lumi})\text{pb}$ NLO: σ_{VV}=16.8±0.5 pb 5.3σ significance -0.2□ WW+WZ →lvjj 40 NLO: 100 120 140 Dijet mass (GeV/c²) dijet mass fit (4.3 fb⁻¹) $\sigma_{WW+WZ}=16.1\pm0.9 \text{ pb}$ matrix element (4.6 fb⁻¹) Events/8 GeV/c² 0005 0005 WW+WZ CDF Run II Preliminary, L=4.6 fb⁻¹ Data (4.3 fb) WW/W7 W+jets Non-W 10⁴ Top Z+jets (a)Events / 0.05 2000 10³ - Data Challenging final 1000 states! 10² 300 200 10 100 0.2 0 0.4 0.60.8 100 Event Probability Discriminant $\sigma_{WW+WZ} = 16.5^{+3.3}_{-3.0}$ (stat + syst)pb $\sigma_{WW+WZ} = 18.1 \pm 4.1 (\text{stat} + \text{syst}) \text{pb}$ 5.2σ significance 5.4 σ significance July 26, 2010 E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris 48

WW+WZ and TGC

July 26, 2010

E.Shabalina -- The physics of top, W and Z -- ICHEP 2010 - Paris