Effects of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds

Lattice Conference 2010 Paris, 23-July 2010

Philipp Gerhold
In collaboration with:
Karl Jansen
Jim Kallarackal

Introduction

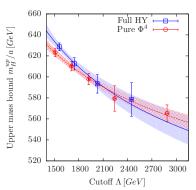
- A heavy fourth fermion generation may be a way to...
 - increase the CP-violating phase in SM by several orders of magnitude. [Hou et al.]
 - strengthen electroweak phase transition supporting scenario of electroweak baryogenesis. [Carena et al.]
- Interest in fourth generation repeatedly vanished and reappeared:
 - 4th generation not excluded by electroweak precision data if mass splitting allowed in 4th doublets. [Holdom et al.]
- A heavy 4th fermion generation would have very strong (non-perturbative?) effect on Higgs boson mass.

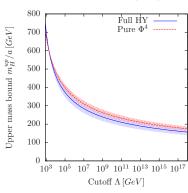
Aim of this investigation

Study the influence of the 4th fermion generation on the Higgs boson mass non-perturbatively in a lattice Higgs-Yukawa model.

Upper Higgs boson mass bound in SM3

- Higgs-Sector of SM is a trivial field theory.
 - Lutoff Λ must remain finite. (Otherwise no interaction.)
 - Consider SM as effective theory valid up to energy scale Λ.
- Upper mass bound in SM3:
 - ▶ How are bounds shifted in the presence of a 4th generation (t',b')?





Targeted coupling structure in SM

- Higgs-Fermion coupling in SM:
 - φ complex scalar doublet and $\tilde{\varphi} = i\tau_2 \varphi$.
 - y_t, y_b, \ldots : Yukawa coupling constants.

$$L_Y = y_b \cdot (\bar{t}, \bar{b})_L \varphi b_R + y_t \cdot (\bar{t}, \bar{b})_L \tilde{\varphi} t_R + h.c. + \dots$$

- Higgs-Higgs self-interaction in SM:
 - \triangleright λ : Quartic coupling constant

$$L_{\varphi} = \lambda (\varphi^{\dagger} \varphi)^2$$

- Higgs-dynamics dominated by ...
 - coupling to heaviest fermions (4th generation).
 - quartic self-coupling (if $\lambda \gg 1$).
- In this study: Pure Higgs-fermion sector of SM:
 - All gauge fields neglected.

Circumventing the No-Go-theorem via overlap fermions

• Lattice model, obeying global $SU(2)_{t} \times U(1)_{y}$ symmetry:

$$S = \sum_{x,\mu} \frac{1}{2} \nabla^{f}_{\mu} \varphi^{\dagger}_{x} \nabla^{f}_{\mu} \varphi_{x} + \sum_{x} \frac{1}{2} m_{0}^{2} \varphi^{\dagger}_{x} \varphi_{x} + \sum_{x} \lambda \left(\varphi^{\dagger}_{x} \varphi_{x} \right)^{2}$$

$$+ \sum_{x,y} \bar{t}_{x} \mathcal{D}^{(ov)}_{x,y} t_{y} + \sum_{x,y} \bar{b}_{x} \mathcal{D}^{(ov)}_{x,y} b_{y} + \sum_{x} y_{b} \cdot (\bar{t}_{L,x}, \bar{b}_{L,x}) \varphi_{x} b_{R,x} + y_{t} \cdot (\bar{t}_{L,x}, \bar{b}_{L,x}) \tilde{\varphi}_{x} t_{R,x} + h.c.$$

A lattice version of chiral symmetry

- Need chiral invariance on lattice (to define $t_L, t_R, ...$)
 - \Rightarrow Ginsparg-Wilson fermions satisfying GW-relation (here: overlap op. $\mathcal{D}^{(ov)}$)

$$\gamma_5 \mathcal{D}^{(ov)} + \mathcal{D}^{(ov)} \hat{\gamma}_5 = 0$$
 with $\hat{\gamma}_5 = \gamma_5 \left(1 - a \mathcal{D}^{(ov)} \right)$

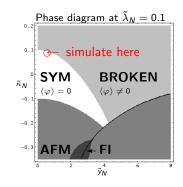
• Use modified projectors $\hat{P}_{\pm} = \frac{1}{2} (1 \pm \hat{\gamma}_5)$ to define t_L, \ldots :

• Use here overlap operator $\mathcal{D}^{(ov)}$:

$$\mathcal{D}^{(ov)} = rac{1}{a} \left\{ 1 + rac{A}{\sqrt{A^\dagger A}}
ight\}, \quad A = \mathcal{D}^{(W)} - rac{1}{a}, \quad \mathcal{D}^{(W)} : ext{Wilson Dirac operator}$$

Strategy for mass bound determination

- Idea: For given cutoff $\Lambda = a^{-1}$ find min. and max. Higgs masses in HY-model consistent with phenomenology.
- Considered phenomenology:
 - ► SSB: $\langle \varphi \rangle / (a\sqrt{Z_G}) \equiv v_r = 246 \,\text{GeV}$ → Fixes cutoff $\Lambda = a^{-1}$.
 - t' quark mass: $m_t/a = 700 \,\text{GeV}$
 - → Fixes Yukawa coupling constant y_t . • b' quark mass: $m_b/a = 700 \text{ GeV}$
 - \rightarrow Fixes Yukawa coupling constant y_b .
- 4 param. 3 cond. = 1 freedom $\rightarrow \lambda$ undetermined
- From tree-level: $m_H^2 \propto \lambda v^2$ \Rightarrow Smallest m_H at small λ . (Weak coupling.) Largest m_H at $\lambda \to \infty$. (Strong coupling.)



Considered observables

- On lattice: Always $\langle \varphi \rangle \equiv 0$. To study SSB:
 - ightarrow Rotate each arphi-configuration: $arphi_{{\sf x}}^{\it rot} = U arphi_{{\sf x}}, \ U \in {\sf SU}(2)$ such that

$$\sum_{x} \varphi_{x}^{\textit{rot}} = \left(\begin{array}{c} 0 \\ \left| \sum_{x} \varphi_{x} \right| \end{array} \right) \text{. Then define } \langle \varphi^{\textit{rot}} \rangle = \left(\begin{array}{c} 0 \\ \nu \end{array} \right).$$

- Define Higgs-/Goldstone-modes: $\varphi_x^{rot} = \begin{pmatrix} g_x^2 + ig_x^1 \\ v + h_x ig_x^3 \end{pmatrix}$
- Propagators: $\tilde{G}_{H}(p) = \langle \tilde{h}_{p}\tilde{h}_{-p} \rangle$, $\tilde{G}_{G}(p) = \frac{1}{3} \sum_{\alpha=1}^{3} \langle \tilde{g}_{p}^{\alpha}\tilde{g}_{-p}^{\alpha} \rangle$
- Goldstone mass and Z_G (analogous for Higgs boson):

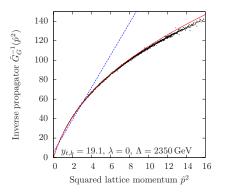
$$Z_G^{-1} = \frac{\mathrm{d}}{\mathrm{d} p_c^2} \left[\tilde{G}_G^c(p_c^2) \right]^{-1} \Big|_{p_c^2 = -m_G^2} \quad \text{and} \quad \left[\tilde{G}_G^c(p_c^2) \right]^{-1} \Big|_{p_c^2 = -m_{Gp}^2} = 0$$

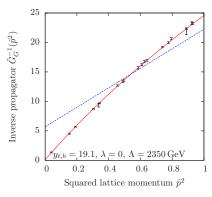
- Top and bottom quark mass: m_t , m_b
 - → From exponential decay of time correlation functions

$$C_t(\Delta t) = \sum_{\vec{x},\vec{y}} \left\langle 2\operatorname{Re}\operatorname{Tr} \; \left(t_{L,\Delta t,\vec{x}} \cdot \bar{t}_{R,0,\vec{y}}\right) \right. \right\rangle \quad \text{and} \quad C_b(\Delta t) = \sum_{\vec{x},\vec{y}} \left\langle 2\operatorname{Re}\operatorname{Tr} \; \left(b_{L,\Delta t,\vec{x}} \cdot \bar{b}_{R,0,\vec{y}}\right) \right. \right\rangle$$

Determination of Z_G

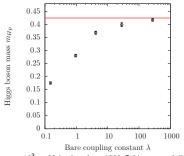
- Continuous fit function for discrete lattice Goldstone propagator needed, to derive Z_G from its derivative.
- Use 1-loop result from renormalized PT (red) with ren. quantities being free parameters as fit ansatz. (Blue: linear fit for comparison.)





Bare model parameters for upper bound on m_H

- Degenerate Yukawa constants: (Otherwise $\det(\mathcal{M}) \in \mathbb{C}$) Tuned to yield: $m_{t,b} = 700 \text{ GeV}$
- m_H rises monoton. with $\lambda \to \infty$ \Rightarrow Choose $\lambda = \infty$
- Accessible energy scales: Require: $\hat{m} > 0.5$ and $\hat{m} \cdot L_{s,t} > 4$ (for all $\hat{m} = m_H, m_t, m_b$) $\Rightarrow \Lambda = 1500 - 4000 \text{ GeV}$ accessible



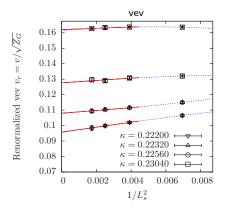
 $16^3 \times 32$ -lattice, $\Lambda \approx 1500~{\rm GeV}$, $y_{t,b} = 0.71138$ Red band: $\lambda = \infty$ result

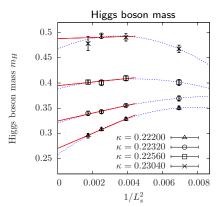
κ	Ls	Lt	N_f	λ	Уt	y _b /y _t	1/v	٨
0.22200	12,16,20,24	32	1	∞	3.18	1	≈ 10.4	$pprox 1520\mathrm{GeV}$
0.22320	12,16,20,24	32	1	∞	3.17	1	≈ 9.3	$pprox 1930\mathrm{GeV}$
0.22560	12,16,20,24	32	1	∞	3.16	1	≈ 7.8	$pprox 2280\mathrm{GeV}$
0.23040	12,16,20,24	32	1	∞	3.12	1	≈ 6.2	pprox 2570 GeV

Infinite volume extrapolation

- Goldstone modes induce algebraic FSE of order $O(L_s^{-2})$, $O(L_s^{-4})$, ...
- Perform infinite volume extrapolation with fit ansatz

Linear:
$$f_m^{(I)}(L_s^{-2}) = A_m^{(I)} + B_m^{(I)} \cdot L_s^{-2}$$
 for $L \ge 16$ (red)
Parabolic: $f_m^{(p)}(L_s^{-2}) = A_m^{(p)} + B_m^{(p)} \cdot L_s^{-2} + C_m^{(p)} \cdot L_s^{-4}$ for all L (blue)

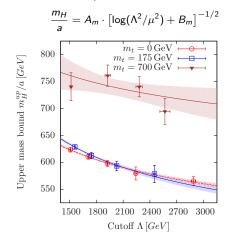




Upper Higgs boson mass bound at $m_t = 700 \,\text{GeV}$

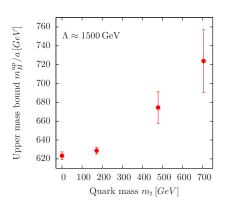
Colored curves:

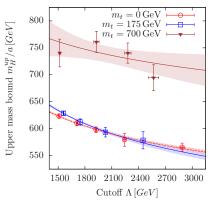
Fits $(A_m, B_m \text{ free fit parameter})$ with expected cutoff-dependence



Quark mass dependence of m_H^{up}

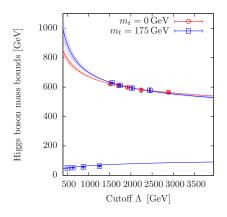
• Dependence of m_H^{up} on quark mass m_t at $\Lambda \approx 1500 \, \text{GeV}$:

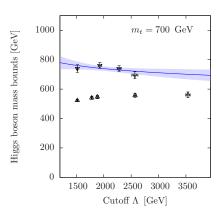




Lower Higgs boson mass bound at $m_t = 700 \,\text{GeV}$

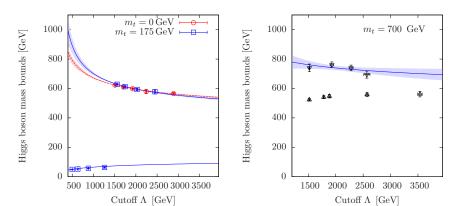
- Left: Upper and lower bounds at $m_t = 0$ GeV and $m_t = 175$ GeV.
- Right: Upper and lower bounds at $m_t = 700$ GeV.





Summary and Outlook

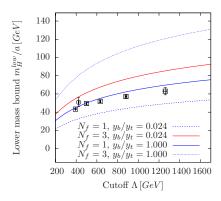
- Effect of heavy 4th fermion generation on m_H^{up} and m_H^{low} studied:
 - Very strong alteration especially of lower bound observed.
- Next: Determine largest possible fermion mass through $y_{t,b} \to \infty$.
- Next: Study effect on Higgs decay properties.

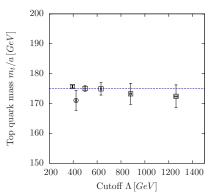


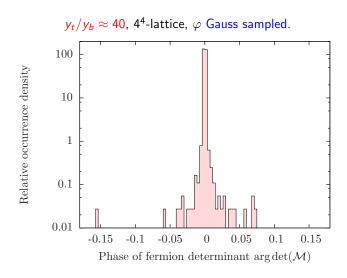
Lower Higgs boson mass bound

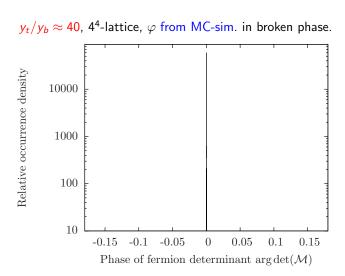
- m_H : Colored lines: CEP-results for $V=\infty$, different physical setups Red curve closest to situation in SM
- Circular symbols: Series of lattice runs in non-degenerate case i.e. $m_b = 4.2 \text{ GeV} \Rightarrow y_b/y_t = 0.024$.

Caution: Unknown systematic uncertainties due to $\det(M) \in \mathbb{C}$, if $y_t \neq y_b$

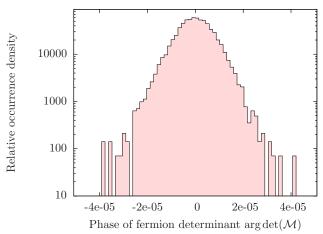




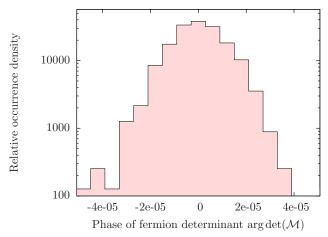




 $y_t/y_b \approx 40$, 4⁴-lattice, φ from MC-sim. in broken phase.



 $y_t/y_b \approx 40$, 6⁴-lattice, φ from MC-sim. in broken phase.



Phase diagram in large N_f -limit

- Analytical calculation based on Constraint Effective Potential (CEP)
- Use lattice parameters $\kappa, \hat{\lambda}, \hat{y}_{t,b}$ related to $m_0, \lambda, y_{t,b}$ through

$$\lambda = \frac{\hat{\lambda}}{4\kappa^2}, \quad m_0^2 = \frac{1-2N_f\hat{\lambda}-8\kappa}{\kappa}, \quad y_{t,b} = \frac{\hat{y}_{t,b}}{\sqrt{2\kappa}}$$

• Consider limit $N_f \to \infty$, while scaling $\kappa, \hat{\lambda}, \hat{y}_{t,b}$ according to:

$$\hat{\mathbf{y}}_{t,\,b} = \frac{\tilde{\mathbf{y}}_{N}}{\sqrt{N_{f}}}\,,\quad \hat{\lambda} = \frac{\tilde{\lambda}_{N}}{N_{f}}\,,\quad \varphi = N_{f}^{1/2}\tilde{\varphi},\quad \kappa = \tilde{\kappa}_{N}\,,\qquad \tilde{\mathbf{y}}_{N},\,\tilde{\lambda}_{N},\,\tilde{\kappa}_{N},\,\tilde{\varphi} = \mathrm{const}$$

Order parameters:

$$\langle \varphi \rangle$$
 and $\langle \varphi \rangle_s \equiv \langle \frac{1}{V} \sum_s (-1)^{\sum_{\mu} x_{\mu}} \varphi_x \rangle$, $V = L_s^3 \times L_t$

Four phases:

• SYM:
$$\langle \varphi \rangle = 0$$
, $\langle \varphi \rangle_s = 0$

$$\blacktriangleright \text{ FM: } \langle \varphi \rangle \neq 0, \, \langle \varphi \rangle_s = 0$$

► AFM:
$$\langle \varphi \rangle = 0$$
, $\langle \varphi \rangle_s \neq 0$

▶ FI:
$$\langle \varphi \rangle \neq 0, \ \langle \varphi \rangle_s \neq 0$$

