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Introduction and motivation

Introduction

@ A heavy fourth fermion generation may be a way to...

» increase the CP-violating phase in SM by several orders of
magnitude. [Hou et al.]

> strengthen electroweak phase transition supporting scenario of
electroweak baryogenesis. [Carena et al.]

@ Interest in fourth generation repeatedly vanished and reappeared:

» 4th generation not excluded by electroweak precision data
if mass splitting allowed in 4th doublets. [Holdom et al.]

@ A heavy 4th fermion generation would have very strong
(non-perturbative?) effect on Higgs boson mass.

Aim of this investigation

Study the influence of the 4th fermion generation on the Higgs boson
mass non-perturbatively in a lattice Higgs-Yukawa model.




Introduction and motivation

Upper Higgs boson mass bound in SM3

@ Higgs-Sector of SM is a trivial field theory.
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Upper mass bound m'

» Cutoff A must remain finite. (Otherwise no interaction.)

> Consider SM as effective theory valid up to energy scale A.

Upper mass bound in SM3:
» How are bounds shifted in the presence of a 4th generation (t',b’)?
660 : : : 800 T
Full H\i —a— Full HY ———
640 Pure &* —o6— ] ? 700
620 § 600
F o500
600 =
= 400
580 2
z 300
560 =200
2
540 | & L ]
5 ) 100
520 L L L L L L 0 L L L L L L L
1500 1800 2100 2400 2700 3000 10° 10° 107 10° 10'' 10" 10'° 10'7

Cutoff A [GeV] Cutoff A [GeV]



The lattice Higgs-Yukawa model Targeted coupling structure in SM
Circumventing the No-Go-theorem

Targeted coupling structure in SM

@ Higgs-Fermion coupling in SM:

> ¢ complex scalar doublet and @ = imp.

> V¢, Yb, - ... Yukawa coupling constants.
Ly = yp-(t,b)pbr + yi - (E, b) Ptr + hc.+...

@ Higgs-Higgs self-interaction in SM:
> X: Quartic coupling constant
2
L, = /\(SDTQO)
@ Higgs-dynamics dominated by ...
> coupling to heaviest fermions (4th generation).

> quartic self-coupling (if A > 1).

@ In this study: Pure Higgs-fermion sector of SM:
> All gauge fields neglected.
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Circumventing the No-Go-theorem via overlap fermions

@ Lattice model, obeying global SU(2),xU(1), symmetry:
1 1 2
s = > EV:MIVLW +>° Emgcpiwx +> A (cpiw)
X, X X
+ S EDE)t 3 BDE)by 3 vy - (B B)exbrix +ve s (B bux)Bxtr . + hoc.
X,y X,y X

A lattice version of chiral symmetry

@ Need chiral invariance on lattice (to define t;, tg,...)
= Ginsparg-Wilson fermions satisfying GW-relation (here: overlap op. 'D(o‘/))

D) £ DOV45 =0 with 45 =75 (1 - SD("V))

@ Use modified projectors Py = 2 (1£495) to define t, ... :

Continuum Lattice
(6)ee = 7= (4) (5)ee = 2 (5)
& br = (5b)Ps Ebr = (5b)Ps

@ Use here overlap operator D(V):

1 A 1
plov) — - {1 ue \/ﬁ} , A=DW) _ - DMW) : Wilson Dirac operator



Investigation strategy

Physical results from the lattice

Strategy for mass bound determination

Upper bound on my at m; = 700 GeV
Lower bound on my at m; = 700 GeV

@ lIdea: For given cutoff A = a~! find min. and max. Higgs masses in

HY-model consistent with phenomenology.

@ Considered phenomenology:
» SSB: (p)/(avZs) = v, = 246 GeV

— Fixes cutoff A = a1,

» t' quark mass: m;/a = 700 GeV
— Fixes Yukawa coupling constant y;.

» b’ quark mass: mp/a = 700 GeV

— Fixes Yukawa coupling constant y,.

@ 4 param. - 3 cond. = 1 freedom

— A undetermined.

@ From tree-level: m?, oc Av?
= Smallest my at small A. (Weak coupling.)

Largest my at A — oco. (Strong coupling.)
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Investigation strategy
Upper bound on my at m; = 700 GeV

Physical results from the lattice Lower bound on my; at m; = 700 GeV

Considered observables

@ On lattice: Always (p) = 0. To study SSB:
— Rotate each p-configuration: ¢t = Upy, U € SU(2) such that

0
) 0
LP;(“ = ( ‘wa‘ ) . Then define (") = ( v > .
X X

@ Define Higgs-/Goldstone-modes: ot ( Vfi*fxlfgg )

@ Propagators: Gr(p) = (hph_p), Gg(p) =3

e

PP YeY
1( o ES L)

@ Goldstone mass and Zg (analogous for Higgs boson):

7ot = S eewd) |

:dp2 , and [@é(pi)]_l‘ =0
c

p2=—m?Z pE=—mz,
@ Top and bottom quark mass: m;, my

— From exponential decay of time correlation functions

G(an =32 (2ReTr (tLacx Troy) ) and Co(at) = (2ReTr (bLacsk  broy) )

x5y X,y



Investigation strategy
Upper bound on my at m; = 700 GeV
Lower bound on my at m; = 700 GeV

Physical results from the lattice

Determination of Z¢

@ Continuous fit function for discrete lattice Goldstone propagator
needed, to derive Zg from its derivative.

@ Use 1-loop result from renormalized PT (red) with ren. quantities
being free parameters as fit ansatz. (Blue: linear fit for comparison.)
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Investigation strategy
Upper bound on my at m; = 700 GeV

Physical results from the lattice Lower bound on my; at m; = 700 GeV

Bare model parameters for upper bound on my

0.45 + 4
@ Degenerate Yukawa constants: oaf . 7]
(Otherwise det(M) € C) g oosst : ]
Tuned to yield: m; , = 700 GeV Z 03 . ]
- 0.25 + 4
. . g
@ my rises monoton. with A — oo 2 o2p i
= Choose A = gé 0.15 |- |
= 0.1 4
@ Accessible energy scales: 0.05 1
. ~ ~ 0 L I L
Require: m > 0.5 and /- Lsc > 4 0.1 1 10 100 1000

Bare coupling constant A

(for all m = my, m¢, mp)
163 x 32-lattice, A ~ 1500 GeV,, y; , = 0.71138

= A\ = 1500 — 4000 GeV accessible Red band: A — oo result
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Investigation strategy
Upper bound on my at m; = 700 GeV
Lower bound on my at m; = 700 GeV

Physical results from the lattice

Infinite volume extrapolation

@ Goldstone modes induce algebraic FSE of order O(L;2), O(L;*), ...

S
@ Perform infinite volume extrapolation with fit ansatz

Linear: £(L72) = AD 4+ BY . 172 for L > 16 (red)
Parabolic: £ (L72) = AP + B . 1724+ P . 17* for all L (blue)
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Investigation strategy
Upper bound on my at m; = 700 GeV

Physical Its fi he latti e
ysical results from the lattice Lower bound on my at m; = 700 GeV

Upper Higgs boson mass bound at m; = 700 GeV

@ Colored curves:
Fits (Am, Bm free fit parameter) with expected cutoff-dependence
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Investigation strategy
Upper bound on my at m; = 700 GeV
Lower bound on my at m; = 700 GeV

Physical results from the lattice

Quark mass dependence of m,f

@ Dependence of m, on quark mass m; at A ~ 1500 GeV:
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Investigation strategy
Upper bound on my at m; = 700 GeV
Lower bound on my at m; = 700 GeV

Physical results from the lattice

Lower Higgs boson mass bound at m; = 700 GeV

@ Left: Upper and lower bounds at m; = 0 GeV and m; = 175 GeV.
@ Right: Upper and lower bounds at m; = 700 GeV.
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Summary and Outlook
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Summary and Outlook

Summary and Outlook

@ Effect of heavy 4th fermion generation on m;f and mj3* studied:
» Very strong alteration especially of lower bound observed.
@ Next: Determine largest possible fermion mass through y; , — oo.

@ Next: Study effect on Higgs decay properties.
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Lower Higgs boson mass bound

@ my: Colored lines: CEP-results for V = oo, different physical setups
Red curve closest to situation in SM

@ Circular symbols: Series of lattice runs in non-degenerate case
i.e. mp =4.2GeV = y,/y: = 0.024.
Caution: Unknown systematic uncertainties due to det(M) € C, if y: # yp
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Complex phase of fermion determinant

vi/yp = 40, 4*-lattice, ¢ Gauss sampled.
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Complex phase of fermion determinant

vi/yp = 40, 4*-lattice, ¢ from MC-sim. in broken phase.
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Complex phase of fermion determinant

vi/yp ~ 40, 4*-lattice, ¢ from MC-sim. in broken phase.

z

£ 10000 E

<

;

g

Z 1000 E

3

o

[}

Z

E 100 | E

5}

) H H
10 1 1

-4e-05  -2e-05 0 2e-05 4e-05

Phase of fermion determinant argdet(M)



Summary and Outlook
Backup slides
Summary and Outlook

Complex phase of fermion determinant

vi/yp ~ 40, 6*-lattice, ¢ from MC-sim. in broken phase.
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Phase diagram in large N¢-limit

@ Analytical calculation based on Constraint Effective Potential (CEP)

@ Use lattice parameters mj\,f/t’b related to mg, A, y; » through

N X m2_172/\/f}78m y S
4x2’ 0 K ’ tb V2K

@ Consider limit Ny — oo, while scaling &, X,f/t,b according to:

y _}77N A—A—N = N2 k=R YN, AN, Ry, B = cons
yt,bf\/fo, >\fo7 »=N""¢, = RN INs AN, By, 6= t
o Xy =0.1, V = oo, Nf = o0
@ Order parameters: 0
and = (TS(-1)ZuNg), V=13xL
() (¢)s <VXX3( ) ©x) sxbe om -
@ Four phases:
> SYM: (p) =0, (p)s =0
> FM: (p) #0, (p)s =0
> AFM: () = 0, (). #0
> Fl:  (¢) #0, (p)s #0
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