Quantum-correlated D-decays at CLEO-c

Introduction: quantum-correlated decays & 'CP-tagging' at the $\psi(3770)$

Quantum-correlated studies of D \rightarrow K_S $\pi^+\pi^-$ and K_SKK and impact on the γ determination

Quantum-correlated studies of $D \rightarrow K\pi$, $K\pi\pi\pi$ and $K\pi\pi^{0}$

Summary and Prospects

Guy Wilkinson (University of Oxford) On behalf of the CLEO-c collaboration

CP-tagging at the $\psi(3770)$

Quantum correlations in process $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D^0}$ allow for *CP-tagging*. Reconstruct one meson in mode of interest, eg. $K_S\pi^+\pi^-$, & other in CP-eigenstate, e.g. K⁺K⁻ (CP+). Know that the $\psi(3770)$ is C=-1 & so infer that signal decay is CP-

Threshold running has other practical advantages (all examples CLEO-c: hermetic detector with excellent EM and hadron PID):

CLEO-c accumulated 818 pb⁻¹ at ψ (3770). Prospects for more at BES-III

CP-tagged D-decays: the essential idea

Dalitz plots of CP-tagged decays at the $\Psi(3770)$ provide orthogonal info to flavour tagged events accessible in, eg., D* decays. They provide direct access to the cosine of strong phase difference between the D⁰ & D⁰ (cos δ)

In given bin of Dalitz space suitable combination of flavour & CP-tagged info allows $\cos \delta$ to be extracted. In fact, quantum-coherence means *other* hadronic decays, not only CP-eigenstates, can be used to extract useful information on δ , & more...

CP-tagged D-decays: applications

The strong phase information provided by quantum-correlated D- \overline{D} events is important for three main reasons:

- 1) Interesting in itself for understanding D-decay dynamics and resulting light-quark mesons produced
- 2) Strong phases appear in measurements of D-mixing parameters, eg. studies of 'wrong sign' $D^0 \rightarrow K^+\pi^-$ events

 Invaluable for measurements of CKM angle γ (Φ₃) in B→DK decays (main focus of talk)

Present direct measurements give $\gamma = (70^{+14}_{-21})^{\circ}$ (CKMfitter)

Quantum-correlated D-decays

will play crucial role as B-decay statistical uncertainty decreases, e.g. at LHCb

 $K^{0}{}_{S}hh$; $K\pi$; $K\pi\pi\pi$; $K\pi\pi^{0}$

 $r_D \& \delta_D$ analogous to B-decay quantities. For 3, 4-... body decays, these parameters vary over Dalitz space

• Comparison of B⁻ and B⁺ rates allow γ parameters vary over Dalitz to be extracted. But other parameters in game. In particular invaluable to have constraint on δ_D – the very quantity we can access in quantum-correlated D-decays !

Study of $D \rightarrow K_S \pi^+ \pi^-$ and $D \rightarrow K_S K^+ K^-$ Dalitz Plots in Quantum-correlated Decays

- Motivation: B-factory $B \rightarrow D(K_S \pi^+\pi^-)K$ model dependent analyses
- The binned model independent $B \rightarrow D(K_S \pi^+ \pi^-)K$ analysis
- CLEO-c quantum-correlated study of $D \rightarrow K_s \pi^+ \pi^-$
- CLEO-c quantum-correlated study $D \rightarrow K_S KK$

B-factory $B \rightarrow D(K_S h^+h^-)K$ Dalitz Plots for γ

A powerful (and at *present*, only statistically useful) choice of common state f(D) is $K_sh^+h^-$. Rich resonant substructure.

Differences between B⁻ and B⁺ Dalitz plots allow γ to be extracted in unbinned fit...

...need to understand different amplitudes from D^0 and \overline{D}^0 decay across Dalitz space, esp. variation in strong phase

Present approach of BABAR [1] & Belle [2]: construct Dalitz model of $K_S \pi^+ \pi^-$ with flavour tagged decays. Impressive work – estimated model uncertainty of 3-9° which is << statistical error. But LHCb hopes to reach 3° stat error with 10 fb⁻¹

Highly desirable to have high precision model independent approach

Binned Model-Independent Fit

Binned fit proposed by Giri *et al.* [PRD 68 (2003) 054018] and developed by Bondar & Poluektov [EPJ C 55 (2008) 51; EPJ C47 (2006) 347] removes model dependence by relating events in bin i of Dalitz plot to *experimental observables.*

Choosing bins of *expected* similar strong phase difference maximises statistical precision Here take 8 bins of equal spacing in $\Delta \delta_D$ (using as reference model: BaBar, PRL 95 (2005) 121802) Small loss in statistical sensitivity w.r.t. unbinned result...(here ~20%) but no model error!

CLEO-c Quantum-Correlated $K_{S,L}\pi^+\pi^-$ Analysis

Use 818 pb⁻¹ of $\psi(3770)$ data

- Flavour tags: ~20k double-tags
- CP-tags: ~1600 double-tags
 - \rightarrow needed for c_i extraction
- $K^0\pi^+\pi^- vs K^0\pi^+\pi^- events: ~1300$ \rightarrow needed for s_i and c_i extraction
- K_Lπ⁺π⁻ events are also used: CP-odd K_Sπ⁺π⁻ ≈ CP-even K_Lπ⁺π⁻

Signal to background 10-100 depending on tag mode

R. Briere et al., PRD 80 (2009) 032002

Mode	ST Yield	$K_S^0 \pi^+ \pi^-$ yield	$K_L^0 \pi^+ \pi^-$ yield		
Flavor Tags					
$K^{-}\pi^{+}$	144563 ± 403	1447	2858		
$K^-\pi^+\pi^0$	258938 ± 581	2776	5130		
$K^-\pi^+\pi^+\pi^-$	220831 ± 541	2250	4110		
$K^-e^+\nu$	123412 ± 4591	1356	-		
CP-Even Tags					
K^+K^-	12867 ± 126	124	345		
$\pi^+\pi^-$	5950 ± 112	62	172		
$K^0_S \pi^0 \pi^0$	6562 ± 131	≁ 56	-		
$K_L^0 \pi^0$	27955 ± 2013	229	-		
CP-Odd Tags					
$K_S^0 \pi^0$	19059 ± 150	189	281		
$K^0_S\eta$	2793 ± 69	39	41		
$K^0_S \omega$	8512 ± 107	83	-		
$K_S^0 \pi^+ \pi^-$	-	475	867		

gives information unique to $\psi(3770)$ analysis

CP-tagged $K_s \pi^+ \pi^-$ Dalitz plots

Clear differences seen between CP-odd and CP-even:

CLEO-c results on c_i & s_i, and implications

R. Briere *et al.*, PRD 80 (2009) 032002 (model = BABAR PRL 95 (2005) 121802)

Broad agreement with predictions

Projected uncertainty on γ arising from uncertainty on c_i & s_i is 1.7°:

Smaller than estimate of model error, & (more important!) experimental in origin, dominated by finite CLEO-c statistics (But recall that this binning gives ~20% loss in σ_{stat} w.r.t. unbinned approach)

Finally, note that $c_i \& s_i$ can also be used as inputs in $K_S \pi \pi$ charm mixing analysis, see: Bondar, Poluektov & Vorobiev, arXiv:1004.2350

Recent developments

CLEO-c has re-performed $K_S \pi^+ \pi^- c_i \& s_i$ measurements with same data & approach (+ some improvements on systematics) but with alternative binnings. Motivations:

- \bullet Better model \rightarrow better chance bin choice will give expected statistical precision
 - Much improved BABAR model [PRD 78 (2008) 034023 (2008)] . e.g. K-matrix for ππ S-wave & better description of Kπ S-wave. Take as baseline.
 (Aside: even more recent BABAR model (arXiv:1005.1096) very similar to this.)
- Within given model, possible to find binnings with better statistical precision than original equal $\Delta\delta$ _D choice.
 - 'optimal binning' which in low background environment gives ~10% improvement in statistical sensitivity w.r.t. equal $\Delta\delta_{D}$ choice
 - 'modified optimal binning' which does same as above, but for scenario where more background expected (use LHCb expectations)
- More binnings give experiments opportunity for cross-checks
 - Produce equal $\Delta\delta$ _D binning results using Belle model [PRD 81 (2010) 112002]

Extending to K_SKK

Dalitz γ analysis can be extended to $B \rightarrow D(K_S KK)K$. Pioneered by BABAR [PRD 78 (2008) 034023 & arXiv:1005.1096] who have built an amplitude model with flavour tagged decays

Measurement of c_i's and s_i's also performed at

$K_SK^+K^-c_i$, s_i analysis

c_i and s_i results calculated with equal $\Delta \delta_D$ binning for 2, 3 and 4 bins. An example – 3 bin division and preliminary results:

Above based on BABAR, PRD 78 (2008) 034023. Final results based on BABAR model of arXiv:1005.1096 to be published v. soon, together with new $K_S \pi^+\pi^-$ results

Other CLEO-c quantumcorrelated measurements

• CLEO-c coherence factor analysis of $D \rightarrow K\pi\pi\pi$, $K\pi\pi^0$

• CLEO-c analysis of $D \rightarrow K\pi$ strong phase

Measuring $\delta_{D}^{K\pi}$ in Quantum Correlated D Decays

Strong phase difference $\delta_D^{K\pi}$ between D⁰ and $\overline{D^0} \rightarrow K\pi$ of great interest as free parameter in B \rightarrow DK analysis (K π v. important mode) as well as mixing studies. Usual idea: tag one D in CP eigenstate, other side is mixture of D⁰ and D⁰, hence:

Rate ~ $B_{CP+} B_{K\pi} (1 + 2r_D^{K\pi} \cos \delta_D^{K\pi})$

Approximate - full expression has additional dependence on mixing parameters x & y...

Analysis: measure set of single & double tag rates, with K π vs CP tags, & flavour tags. Extract results on $\delta_D^{K\pi}$, mixing and BRs.

Existing analysis uses ~1/3 of total dataset. In isolation results on $\delta_D^{K\pi}$ and mixing not competitive with B-factory results, but good precision achievable with external constraints

$$\delta_{\rm D}^{\rm K\pi} = (22^{+11+9}_{-12-11})$$

Also resolves two-fold ambiguity in $\delta_D^{K\pi}$ solution !

Update will appear this autumn using full dataset and additional tags

CLEO-c: PRL 100 (2008) 221801; PRD 78 (2008) 012001

CLEO-c Coherence Factor Analysis

Double-tag technique can also be used to measure mean strong phase difference, δ , and 'coherence factor', R, for decays such as D⁰, D⁰ \rightarrow K⁻ π ⁺ π ⁰ and K⁻ π ⁺ π ⁻ π ⁺

Coherence factor expresses decay to which intermediate resonances act in phase if final state is used in an inclusive manner in $B \rightarrow DK \gamma$ measurement.

K $\pi\pi^0$ – very coherent, acts similarly to two-body decay. High γ sensitivity !

Kπππ – lower coherence favoured, so less sensitivity to γ (but helps fix r_B!)

Updates under consideration using $K_S \pi \pi$ (& corresponding c_i , s_i info) as new tag. Analogous measurements underway for $K_S K \pi$ final state.

Conclusions and Outlook

CLEO-c results available for D decays in several quantum-correlated analyses:

- $D \rightarrow K_S \pi^+ \pi^-$: c_i and s_i in 8 bins of equal width in $\Delta \delta$
- D \rightarrow K $\pi\pi\pi$, K $\pi\pi^0$: coherence factor & average strong phase difference

• D \rightarrow K π : strong phase difference

These results provide invaluable input to the γ measurement !

Final or new preliminary results available v. soon on additional topics:

- $D \rightarrow K_S K K$: c_i and s_i measurements
- $D \rightarrow K_S \pi^+ \pi^-$: variety of binnings offering improved precision / based on better model
- $D \rightarrow K\pi$: full statistics

And possibilities exist for analysis of other channels, e.g. $D \rightarrow K_S K^+\pi^-$, $D \rightarrow K_S \pi^+\pi^-\pi^0$

BES-III should be able to repeat and extend these studies with higher statistics. First $\psi(3770)$ running already underway – almost 1 fb⁻¹ already accumulated.

All ψ(3770) data used

~1/3 ψ(3770) data used

Backups

Atwood-Dunietz-Soni (ADS) Method

Low interference scale of B \rightarrow DK method (r_B~0.1) can be enhanced by exploiting Doubly Cabibbo Suppressed modes eg. D⁰ \rightarrow K⁺ π ⁻

This introduces two new parameters:

$$\frac{\langle \mathbf{D}^0 \longrightarrow \mathbf{K}^+ \pi^- \rangle}{\langle \overline{\mathbf{D}}^0 \longrightarrow \mathbf{K}^+ \pi^- \rangle} = \mathbf{r}_{\mathbf{D}}^{\mathsf{K} \pi} \mathbf{e}^{i \delta_D^{\mathsf{K} \pi}}$$

 $\mathbf{D}\mathbf{K}^{\mathsf{T}} \mathbf{P} e^{i\delta_{D}^{\mathsf{K}\mathsf{T}}}$ $\mathbf{B}^{\mathsf{T}} \mathbf{A}\mathbf{D}\mathbf{S} \quad \mathbf{K}^{\mathsf{T}} \mathbf{\pi}^{\mathsf{T}} \mathbf{K}^{\mathsf{T}}$ $\mathbf{P} B e^{i(\delta_{B}^{\mathsf{T}}, \gamma)} \mathbf{D} \mathbf{K}^{\mathsf{T}}$

0.06, ie. similar in magnitude to r_B

4 possible final states, for 2 of which there can be a big CP-asymmetry:

$$\Gamma(\mathbf{B}^{-} \to (\mathbf{K}^{+}\pi^{-})_{\mathbf{D}}\mathbf{K}^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cdot \cos(\delta_{B} + \delta_{D}^{K\pi} - \gamma)$$

$$\Gamma(\mathbf{B}^{+} \to (\mathbf{K}^{-}\pi^{+})_{\mathbf{D}}\mathbf{K}^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cdot \cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma)$$

A powerful way to constrain γ , but need to know $\delta_D^{\kappa\pi}$ Can be measured in quantum correlated D decays !

these interference terms are 1st order

Modelling the $K_s \pi^+ \pi^-$ decay

Unbinned fit of Dalitz space in $B \rightarrow D(K_s \pi^+\pi^-)K$ decays requires reliable model of D decay. Model developed on flavour tagged D* decays.

State of the art – BaBar model fitted from 487k decays:

Ingredients – 10 resonances described with isobar model. S-wave $\pi\pi$ and K π treated with K-matrix approach and LASS parametrisation respectively (χ^2 / ndf = 1.11 to be compared with 1.20 for pure isobar model)

Impressive work – error on γ estimated to be 7°. But model systematic, even this small, uncomfortable for future very high stats measurements eg. LHCb.

A Word on $K_L \pi^+ \pi^-$ in CLEO-c Analysis

CP-odd $K_S \pi^+\pi^- \approx$ CP-even $K_L \pi^+\pi^-$ & so latter can be used to increase statistics

In analysis we measure separate c_i ', s_i ' for $K_L \pi^+ \pi^-$, which differ from c_i , s_i by offsets which are floated in fit, but constrained with conservative uncertainties

Impact on γ Measurement

CLEO-c analysis has eliminated model error, but there is a residual uncertainty on γ arising from finite knowledge of c_i and s_i.

This has been estimated with a 'toy MC' with many simulated $B \rightarrow D(K_S \pi^+\pi^-)K$ experiments.

Error of 1.7° (recall model error = 7°)

With this result the reduced (~20%) statistical precision of binned analysis w.r.t. unbinned fit will soon be overcome at LHCb, with statistics dominating uncertainty

Quantum Correlated D-decays at CLEO-c Guy Wilkinson, ICHEP 2010 Paris

Extending ADS to Multi-body D Decays

ADS method can be extended to other decays with D \rightarrow K + n π , eg. K[±] π ⁺ π ⁺ π ⁺

Only difference: intermediate resonances such as $D \rightarrow K^* \rho$, $K^- a_1(1260)^+$, etc mean that many amplitudes contribute, each with their own strong phase

If we make no attempt to isolate a particular resonance, then interference term is diluted by a 'coherence factor' $R_{K3\pi}$

$$\Gamma(B^{-} \to (K^{+}\pi^{-}\pi^{-}\pi^{+})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2r_{B}r_{D}^{K3\pi}R_{K3\pi}\cos(\delta_{B} + \delta_{D}^{K3\pi} - \gamma)$$

This is not present in $K\pi$ case

 $R_{K3\pi}$ can take value between 0 (incoherent) and 1 (2 body, single amplitude limit)

 $\delta_{K3\pi}$ is now the average strong phase difference over Dalitz space

 $R_{K3\pi}$ and $\delta_D^{K3\pi}$ can also be measured at ψ " [Atwood, Soni, PRD 68 (2003) 033003] Analogous parameters exist in related channels, eg. $K\pi\pi^0$. CLEO-c has measured coherence factor and strong phase in $K\pi\pi\pi$ and $K\pi\pi^0$.

Coherence Factor Analysis Event Yields

Analysis based on full 818 pb⁻¹ $\psi(3770)$ CLEO-c dataset

Use 10 separate CP-tags:

CP Tag	K 3π yield	$\mathbf{K}\pi\pi^0$ yield
ΚΚ, ππ	782	1100
$K_s \pi^0$	705	891
$K_{s}\omega(\pi^{+}\pi^{-}\pi^{0})$	319	389
$K_s \pi^0 \pi^0$	283	406
$K_{S}\phi(K^{+}K^{-})$	53	91
$K_{s}\eta(\{\gamma\gamma,\pi^{+}\pi^{-}\pi^{0}\})$	164	153
K_s η'(π ⁺ π ⁻ η)	36	61
$K_L \pi^0$	695	1234
$K_L \omega(\pi^+\pi^-\pi^0)$	296	449
Total	3465	4774
CP = 1, CP = -1		

Flat background assessed from m_{bc} space; peaking from MC

Other classes of double tags are suppressed (but generally very sensitive to physics parameters) so yields low: eg. 29 K[±] $\pi\pi\pi$ vs K[±] $\pi\pi\pi$ events

Results for observables

Calculate ratio of observed number of events, ρ , to expected number with zero coherence (\equiv no quantum-correlations being present)

CP-tag results internally consistent

Results for all observables

 $K\pi\pi^0$ looks very coherent; $K\pi\pi\pi$ does not (note that expected sign of shift for given parameter value varies between observables)

Results for Observables & Parameter Extraction

Observable	Value ± stat ± syst
$ ho_{CP+}^{K3\pi}$	$1.077\pm0.024\pm0.029$
$ ho_{CP-}^{K3\pi}$	$0.933\pm0.027\pm0.046$
$ ho_{LS}^{K3\pi}$	$1.112\pm0.226\pm0.102$
$ ho_{K\pi,LS}^{K3\pi}$	$0.971\pm0.169\pm0.062$
$ ho_{CP+}^{K\pi\pi^0}$	$1.073\pm0.020\pm0.035$
$\rho_{CP-}^{K\pi\pi^0}$	$0.868\pm0.023\pm0.049$
$ ho_{LS}^{K\pi\pi^0}$	$0.388\pm0.127\pm0.026$
$ ho_{K\pi,LS}^{K\pi\pi^0}$	$0.170\pm0.072\pm0.027$
$\rho_{K3\pi,LS}^{K\pi\pi^0}$	$1.221\pm0.169\pm0.080$

- Systematic for ρ_{CP} dominated by an internal uncertainty associated with normalisation, which is statistical in nature
- Systematics for other observables are small, and dominated by knowledge of BRs

Observables depend on R and δ , as well as ratio of DCS to CF amplitudes, r_D , and the D mixing parameters x and y.

$$\rho_{LS}^{K3\pi} \cong \frac{1 - R_{K3\pi}^2}{1 + \frac{x^2 + y^2}{2(r_D^{K3\pi})^2} - \frac{R_{K3\pi}}{r_D^{K3\pi}} (y \cos \delta_D^{K3\pi} - x \sin \delta_D^{K3\pi})}$$

$$\rho_{K\pi,LS}^{K3\pi} \propto \frac{1 + \left(\frac{r_D^{K3\pi}}{r_D^{K\pi}}\right)^2 - 2\frac{r_D^{K3\pi}}{r_D^{K\pi}} R_{K3\pi} \cos \delta_D^{K3\pi}}{1 + \frac{x^2 + y^2}{2(r_D^{K\pi})^2} - \frac{1}{r_D^{K\pi}} (y \cos \delta_D^{K\pi} - x \sin \delta_D^{K\pi})}$$

$$\rho_{CP\pm}^{K3\pi} \cong 1 \pm \Delta_{CP}^{K3\pi} \text{ where } \Delta_{CP}^{K3\pi} = y - r_D^{K3\pi} R_{K3\pi} \cos \delta_D^{K3\pi}$$

Perform fit to extract R and δ , using external constraints on other parameters

CLEO-c Results for $R_{K3\pi}$ and $\delta_{\rm\scriptscriptstyle D}^{K3\pi}$

$$\Gamma(B^- \to (K^+ \pi^- \pi^- \pi^+)_D K^-) \propto r_B^2 + (r_D^{K3\pi})^2 + 2r_B r_D^{K3\pi} R_{K3\pi} \cos(\delta_B + \delta_D^{K3\pi} - \gamma)$$

badly known

CLEO-c K $\pi\pi\pi$ & K $\pi\pi^0$

Coherence Factor Analysis

Sensitivity to the $K\pi\pi\pi$ coherence factor and average strong phase difference comes from counting the following classes of double-tagged events:

Double tag Rate	Sensitive to
Κ [±] π [∓] π ⁺ π ⁻ vs Κ [±] π [∓] π ⁺ π ⁻	(R _{K3π}) ²
$K^{\pm}\pi^{\mp}\pi^{0}$ vs $K^{\pm}\pi^{\mp}\pi^{0}$	(R _{Kππ} 0) ²
K [±] π [∓] π ⁺ π ⁻ vs CP	R _{K3π} cos(δ ^{K3π})
$K^{\pm}\pi^{\mp}\pi^{0}$ vs CP	$R_{K\pi\pi^{0}}\cos(\delta^{K\pi\pi^{0}})$
Κ [±] π [∓] π ⁺ π ⁻ vs Κ [±] π [∓]	$R_{K3\pi}$ cos(δ ^{K3π} - δ ^{Kπ})
$K^{\pm}\pi^{\mp}\pi^{0}$ vs $K^{\pm}\pi^{\mp}$	$R_{K\pi\pi^{0}}$ cos(δ ^{$K\pi\pi^{0}$} -δ ^{$K\pi$})
Κ [±] π [∓] π ⁺ π ⁻ vs Κ [±] π [∓] π ⁰	$R_{K3\pi}R_{K\pi\pi^{0}}\cos(\delta^{K3\pi} - \delta^{K\pi\pi^{0}})$

Impact of CLEO-c on LHCb γ Measurement

Expected γ precision at LHCb with 2 fb⁻¹ of data (one year) for ADS modes alone:

Add other measurements, especially $B \rightarrow D(K_S \pi^+ \pi^-)K$, & extrapolate to 10 fb⁻¹

 $\sigma_{\gamma} = 1.9 - 2.7^{\circ}$

...in which $B \rightarrow DK$ methods have a weight of ~70% (variation in number depends on values of phases)

Understanding of D decay properties central to precise measurement of γ !

CLEO-c 281 pb⁻¹ Results for $\delta_D^{K\pi}$

Result also important for charm mixing (x', y' measured in 'wrong sign' $K\pi\pi$ analysis related to x, y through: $x' = x \cos \delta_D^{K\pi} + y \sin \delta_D^{-K\pi}$)

 δ (degrees)

Fit results with all external constraints

Parameter	Extended Fit
$N (10^6)$	$1.042 \pm 0.021 \pm 0.010$
$y (10^{-3})$	$6.5 \pm 0.2 \pm 2.1$
$r^2 \ (10^{-3})$	$3.44 \pm 0.01 \pm 0.09$
$\cos \delta$	$1.10 \pm 0.35 \pm 0.07$
$x^2 (10^{-3})$	$0.06 \pm 0.01 \pm 0.05$
$x\sin\delta \ (10^{-3})$	$4.4\pm2.4\pm2.9$
$K^{-}\pi^{+}$ (%)	$3.78 \pm 0.05 \pm 0.05$
K^-K^+ (10 ⁻³)	$3.88 \pm 0.06 \pm 0.06$
$\pi^{-}\pi^{+}$ (10 ⁻³)	$1.36 \pm 0.02 \pm 0.03$
$K_S^0 \pi^0 \pi^0 (10^{-3})$	$8.35 \pm 0.44 \pm 0.42$
$K_{S}^{0}\pi^{0}$ (%)	$1.14 \pm 0.03 \pm 0.03$
$K_{S}^{0}\eta \ (10^{-3})$	$4.42 \pm 0.15 \pm 0.28$
$K_S^0\omega$ (%)	$1.12 \pm 0.04 \pm 0.05$
$X^{-}e^{+}\nu_{e}~(\%)$	$6.59 \pm 0.16 \pm 0.16$
$K_L^0 \pi^0 \ (\%)$	$1.01 \pm 0.03 \pm 0.02$
$\chi^2_{\rm fit}/{ m ndof}$	55.3/57

Result will improve with full 818 fb⁻¹ data set and inclusion of additional tags