Top-Antitop Production at Hadron Colliders

Roberto BONCIANI

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier/CNRS-IN2P3/INPG, F-38026 Grenoble, France

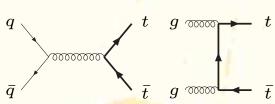
Plan of the Talk

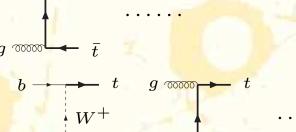
- General Introduction
 - Top Quark at the Tevatron and LHC Perspectives
- Status of the Theoretical calculations
 - Total Cross Section at NLO
 - Analytic Two-Loop QCD Corrections
- Conclusions

Top Quark

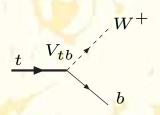
- With a mass of $m_t = 173.1 \pm 1.3$ GeV, the TOP quark (the up-type quark of the third generation) is the heaviest elementary particle produced so far at colliders.
- Because of its mass, top quark is going to play a unique role in understanding the EW symmetry breaking ⇒ Heavy-Quark physics crucial at the LHC.
- Two production mechanisms

 - $pp(\bar{p}) \to t\bar{b}, tq'(\bar{q}'), tW^-$





- Top quark does not hadronize, since it decays in about $5 \cdot 10^{-25}$ s (one order of magnitude smaller than the hadronization time) \Longrightarrow opportunity to study the quark as single particle
 - Spin properties
 - Interaction vertices
 - Top quark mass
- Decay products: almost exclusively $t \to W^+ b$ $(|V_{tb}| \gg |V_{td}|, |V_{ts}|)$



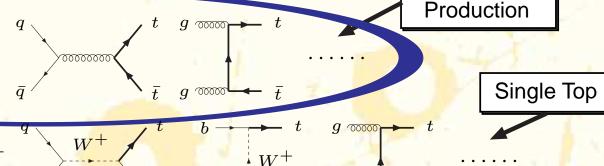
Pair

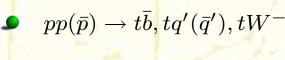
Production

Single Top

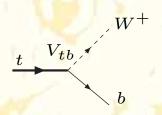
Top Quark

- With a mass of $m_t = 173.1 \pm 1.3$ GeV, the TOP quark (the up-type quark of the third generation) is the heaviest elementary particle produced so far at colliders.
- Because of its mass, top quark is going to play a unique role in understanding the EW symmetry breaking ⇒ Heavy-Quark physics crucial at the LHC.
- Two production mechanisms
 - $lacksquare pp(\bar p) o t \bar t$

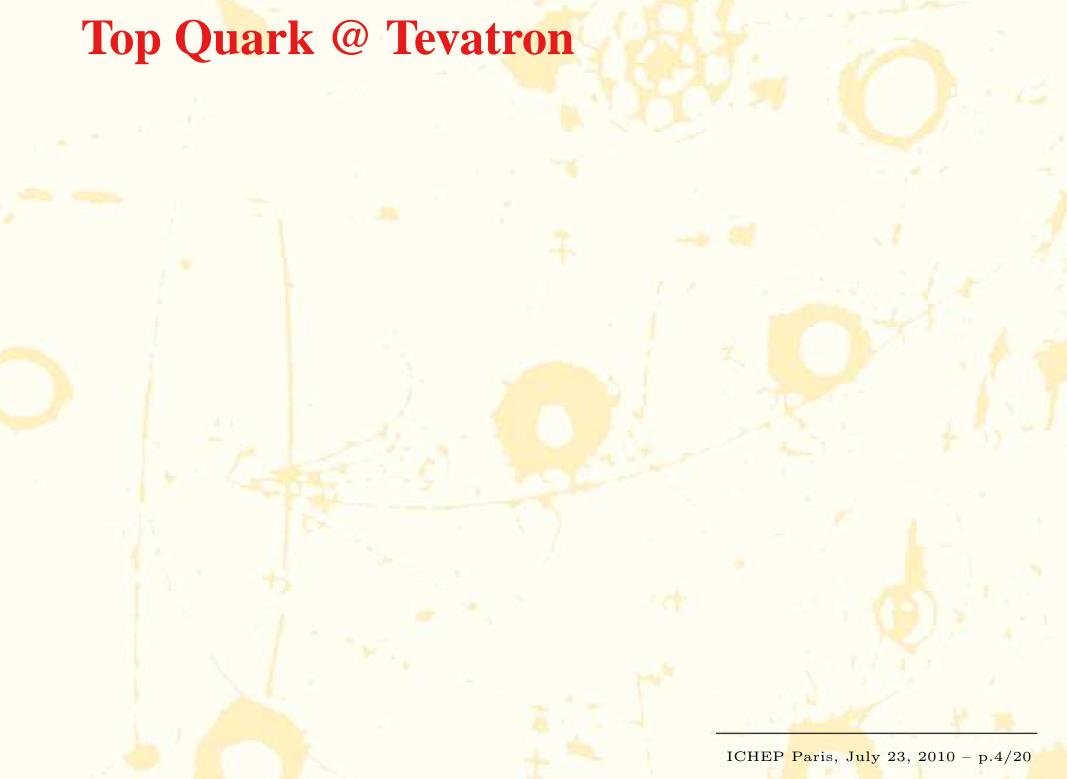




- Top quark does not hadronize, since it decays in about $5 \cdot 10^{-25}$ s (one order of magnitude smaller than the hadronization time) \Longrightarrow opportunity to study the quark as single particle
 - Spin properties
 - Interaction vertices
 - Top quark mass
- Decay products: almost exclusively $t \to W^+ b$ $(|V_{tb}| \gg |V_{td}|, |V_{ts}|)$

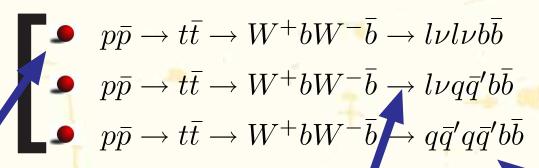


Pair



Events measured at Tevatron

 $\sigma_{tar{t}}\sim7 extsf{pb}$



Dilepton $\sim 10\%$

Lep+jets $\sim 44\%$

All jets $\sim 46\%$

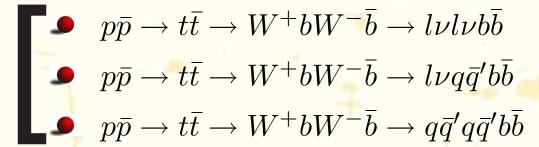
2 high- p_T lept, \geq 2 jets and ME

NO lept, \geq 6 jets and low ME

1 isol high- p_T lept, \geq 4 jets and ME

Events measured at Tevatron

 $\sigma_{tar{t}}\sim7 ext{pb}$



Dilepton $\sim 10\%$

Lep+jets $\sim 44\%$

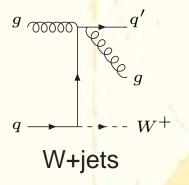
All jets $\sim 46\%$

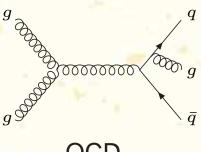
2 high- p_T lept, \geq 2 jets and ME

NO lept, ≥ 6 jets and low ME

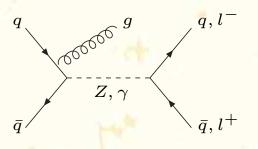
1 isol high- p_T lept, \geq 4 jets and ME

Background Processes

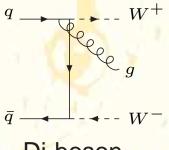




QCD



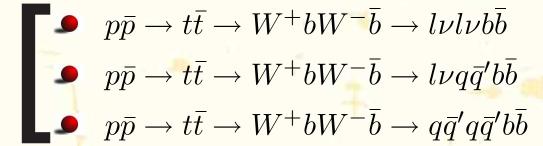
Drell-Yan



Di-boson

Events measured at Tevatron

 $\sigma_{tar{t}}\sim7 ext{pb}$



Dilepton $\sim 10\%$

Lep+jets $\sim 44\%$

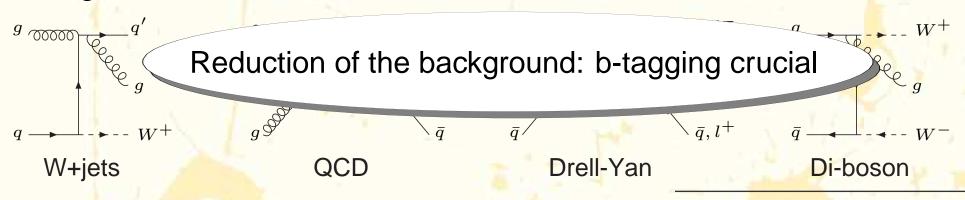
All jets $\sim 46\%$

2 high- p_T lept, \geq 2 jets and ME

NO lept, ≥ 6 jets and low ME

1 isol high- p_T lept, \geq 4 jets and ME

Background Processes



Total Cross Section

$$\sigma_{t\bar{t}} = \frac{N_{data} - N_{bkgr}}{\epsilon L} = 7.0 \pm 0.6 \, \mathrm{pb}$$
 $(m_t = 175 \, \mathrm{GeV})$

Top-quark Mass

$$m_t = 173.1 \pm 1.3 \,\text{GeV} \,(0.75\%)$$

lacksquare W helicity fractions $F_i=B(t o bW^+(\lambda_W=i=-1,0,1))$ $(F_0+F_++F_-=1)$

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} = \frac{3}{4} F_0 \sin^2\theta^* + \frac{3}{8} F_- (1 - \cos\theta^*)^2 + \frac{3}{8} F_+ (1 + \cos\theta^*)^2$$

$$F_0 = 0.66 \pm 0.16 \pm 0.05$$
 $F_+ = -0.03 \pm 0.06 \pm 0.03$

Spin correlations measured fitting the double distribution

$$\frac{1}{N} \frac{d^2 N}{d \cos \theta_1 d \cos \theta_2} = \frac{1}{4} (1 + \kappa \cos \theta_1 \cos \theta_2)$$

$$-0.455 < \kappa < 0.865 (68\% CL)$$

Forward-Backward Asymmetry

$$A_{FB} = (19.3 \pm 6.5(\text{sta}) \pm 2.4(\text{sys}))\%$$

LHC Perspectives

Cross Section

- ▶ With $100\,{\rm pb}^{-1}$ of accumulated data an error of $\Delta\sigma_{t\bar{t}}/\sigma_{t\bar{t}}\sim15\%$ is expected (dominated by statistics!)
- After 5 years of data taking an error of $\Delta \sigma_{t\bar{t}}/\sigma_{t\bar{t}} \sim 5\%$ is expected

Top Mass

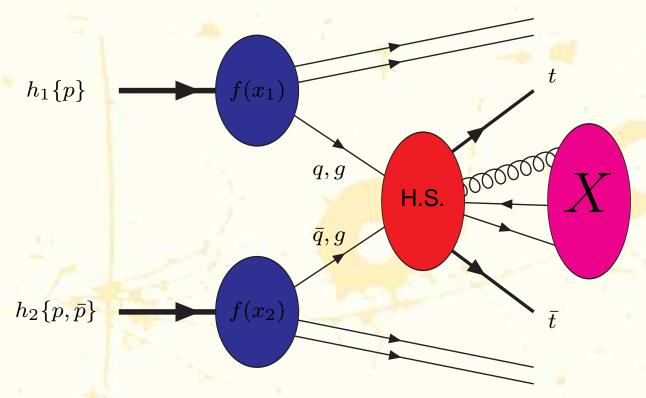
- With 1 fb⁻¹ Mass accuracy: $\Delta m_t \sim 1-3$ GeV
- Top Properties
 - ▶ W helicity fractions and spin correlations with $10 \, \text{fb}^{-1} \Longrightarrow 1-5\%$
 - Top-quark charge. With $1\,{\rm fb}^{-1}$ we could be able to determine $Q_t=2/3$ with an accuracy of $\sim 15\%$
- Sensitivity to new physics
 - all the above mentioned points
 - Narrow resonances: with $1\,{\rm fb}^{-1}$ possible discovery of a Z' of $M_{Z'}\sim 700\,{\rm GeV}$ with $\sigma_{pp\to Z'\to t\bar t}\sim 11\,{\rm pb}$

LHC Perspectives

- Cross Section
 - With $100\,{\rm pb}^{-1}$ of accumulated data an error of $\Delta\sigma_{t\bar{t}}/\sigma_{t\bar{t}}\sim15\%$ is expected (dominated by statistics!)
 - 🔳 After 5 years of data taking an error of $\Delta\sigma_{tar{t}}/\sigma_{tar{t}}\sim 5\%$ is expected
- Top Mass
 - With 1 fb⁻¹ Mass accuracy: $\Delta m_t \sim 1-3$ GeV
- Top Properties
 - W helicity fractions and spin correlations with $10 \, \text{fb}^{-1} \Longrightarrow 1-5\%$
 - Top-quark charge. With $1\,{\rm fb}^{-1}$ we could be able to determine $Q_t=2/3$ with an accuracy of $\sim 15\%$
- Sensitivity to new physics
 - all the above mentioned points
 - Narrow resonances: with $1\,{\rm fb^{-1}}$ possible discovery of a Z' of $M_{Z'}\sim700\,{\rm GeV}$ with $\sigma_{pp'\to t\bar t}\sim11\,{\rm pb}$

Top-Anti Top Pair Production

According to the factorization theorem, the process $h_1 + h_2 \rightarrow t\bar{t} + X$ can be sketched as in the figure:

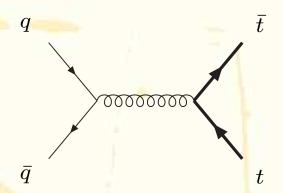


$$\sigma_{h_1,h_2}^{t\bar{t}} = \sum_{i,j} \int_0^1 dx_1 \int_0^1 dx_2 f_{h_1,i}(x_1,\mu_F) f_{h_2,j}(x_2,\mu_F) \ \hat{\sigma}_{ij} \left(\hat{s}, m_t, \alpha_s(\mu_R), \mu_F, \mu_R\right)$$

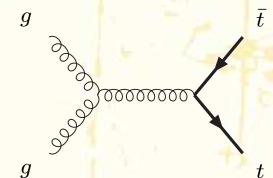
$$s = (p_{h_1} + p_{h_2})^2, \, \hat{s} = x_1 x_2 s$$

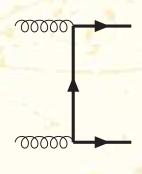
The Partonic Cross Section: Tree-Level

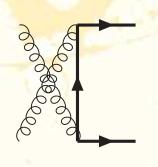
$$q(p_1) + \bar{q}(p_2) \longrightarrow t(p_3) + \bar{t}(p_4)$$



$$g(p_1) + g(p_2) \longrightarrow t(p_3) + \bar{t}(p_4)$$







$$\sigma_{t\bar{t}}^{LO}(LHC, m_t = 171 \, \text{GeV}) = 583 \, \text{pb} \pm 30\%$$

$$\sigma_{t\bar{t}}^{LO}(Tev, m_t = 171 \, \text{GeV}) = 5.92 \, \text{pb} \pm 44\%$$

The Partonic Cross Section: NLO

Fixed Order

- The NLO QCD corrections are quite sizable: + 25% at Tevatron and +50% at LHC.

 Scales variation ±15%.

 Nason, Dawson, Ellis '88-'90; Beenakker, Kuijf, van Neerven, Smith '89-'91;

 Mangano, Nason, Ridolfi '92; Frixione et al. '95; Czakon and Mitov '08.
- Mixed NLO QCD-EW corrections are small: 1% at Tevatron and -0.5% at LHC.

Beenakker *et al.* '94 Bernreuther, Fuecker, and Si '05-'08 Kühn, Scharf, and Uwer '05-'06; Moretti, Nolten, and Ross '06.

All-order Soft-Gluon Resummation

- Leading-Logs (LL)
- Next-to-Leading-Logs (NLL)

Laenen et al. '92-'95; Berger and Contopanagos '95-'96; Catani et al. '96.

Kidonakis and Sterman '97; R. B., Catani, Mangano, and Nason '98.

Next-to-Next-to-Leading-Logs (NNLL) under study.

Moch and Uwer '08; Beneke et al. '09; Czakon et al. '09; Kidonakis '09

$$\sigma_{t\bar{t}}^{\text{NLO+NLL}}(\text{Tev}, m_t = 171 \text{ GeV}, \text{CTEQ6.5}) = 7.61^{+0.30(3.9\%)}_{-0.53(6.9\%)} \text{ (scales)} + 0.53(7\%)_{-0.36(4.8\%)} \text{ (PDFs) pb}$$

$$\sigma_{t\bar{t}}^{\text{NLO+NLL}}(\text{LHC}, m_t = 171 \text{ GeV}, \text{CTEQ6.5}) = 908^{+82(9.0\%)}_{-85(9.3\%)} \text{ (scales)} + 30(3.3\%)_{-29(3.2\%)} \text{ (PDFs) pb}$$

M. Cacciari, S. Frixione, M. Mangano, P. Nason, and G. Ridolfi, JHEP 0809:127,2008

Measurement Requirements for $\sigma_{t\bar{t}}$

Experimental requirements for $\sigma_{t\bar{t}}$:

- **P** Tevatron $\Delta \sigma / \sigma \sim 10\% \Longrightarrow \sim$ ok with the theory!
- LHC (14 TeV, high luminosity) $\Delta \sigma / \sigma \sim 5\%$ ≪ NLO theoretical prediction!!

Kidonakis-Vogt and Moch-Uwer, Langenfeld-Moch-Uwer, presented recently approximated NNLO results for $\sigma_{t\bar{t}}$ including

- scale dependence at NNLO
- NNLL soft-gluon contributions
- Coulomb corrections

This drastically reduces the uncertainty (factorization/renormalization scale dependence) to the level predicted for LHC: $\sim 4-6\%$, and indicate that a COMPLETE NNLO computation is indeed needed in order to match the experimental precision of LHC.

Next-to-Next-to-Leading Order

The NNLO calculation of the top-quark pair hadro-production requires several ingredients:

- Virtual Corrections
 - ullet two-loop matrix elements for qar q o tar t and gg o tar t
 - interference of one-loop diagrams

Körner et al. '05-'08; Anastasiou and Aybat '08

Real Corrections

- one-loop matrix elements for the hadronic production of $t\bar{t} + 1$ parton
- tree-level matrix elements for the hadronic production of $t\bar{t} + 2$ partons

Dittmaier, Uwer and Weinzierl '07-'08

Subtraction Terms

- Both matrix elements known for $t\bar{t}+j$ calculation, BUT subtraction up to 1 unresolved parton, while in a complete NNLO computation of $\sigma_{t\bar{t}}$ we need subtraction terms with up to 2 unresolved partons.
 - → Need an extension of the subtraction methods at the NNLO.

Gehrmann-De Ridder, Ritzmann '09, Daleo et al. '09, Boughezal et al. '10, Glover, Pires '10

Very recently: for double real in $\sigma_{t\bar{t}}$, method proposed by Czakon, arXiv:1005.0274

Next-to-Next-to-Leading Order

The NNLO calculation of the top-quark pair hadro-production requires several ingredients:

- Virtual Corrections
 - two-loop matrix elements for qar q o tar t and gg o tar t
 - interference of one-loop diagrams

Körner et al. '05-'08; Anastasiou and Aybat '08

- Real Corrections
 - one-loop matrix elements for the hadronic production of $t\bar{t} + 1$ parton
 - tree-level matrix elements for the hadronic production of $t\bar{t} + 2$ partons

Dittmaier, Uwer and Weinzierl '07-'08

- Subtraction Terms
 - Both matrix elements known for $t\bar{t}+j$ calculation, BUT subtraction up to 1 unresolved parton, while in a complete NNLO computation of $\sigma_{t\bar{t}}$ we need subtraction terms with up to 2 unresolved partons.
 - → Need an extension of the subtraction methods at the NNLO.

Gehrmann-De Ridder, Ritzmann '09, Daleo et al. '09, Boughezal et al. '10, Glover, Pires '10

Very recently: for double real, method proposed by Czakon, arXiv:1005.0274

Two-Loop Corrections to $q \bar q o t \bar t$

$$|\mathcal{M}|^{2}(s, t, m, \varepsilon) = \frac{4\pi^{2}\alpha_{s}^{2}}{N_{c}} \left[\mathcal{A}_{0} + \left(\frac{\alpha_{s}}{\pi}\right) \mathcal{A}_{1} + \left(\frac{\alpha_{s}}{\pi}\right)^{2} \mathcal{A}_{2} + \mathcal{O}\left(\alpha_{s}^{3}\right) \right]$$

$$\mathcal{A}_{2} = \mathcal{A}_{2}^{(2 \times 0)} + \mathcal{A}_{2}^{(1 \times 1)}$$

$$\mathcal{A}_{2}^{(2 \times 0)} = N_{c}C_{F} \left[N_{c}^{2}A + B + \frac{C}{N_{c}^{2}} + N_{l} \left(N_{c}D_{l} + \frac{E_{l}}{N_{c}} \right) + N_{l}^{2}F_{l} + N_{l}N_{h}F_{lh} + N_{h}^{2}F_{h} \right]$$

$$+N_{h} \left(N_{c}D_{h} + \frac{E_{h}}{N_{c}} \right) + N_{l}^{2}F_{l} + N_{l}N_{h}F_{lh} + N_{h}^{2}F_{h} \right]$$

218 two-loop diagrams | contribute to the | 10 | different color coefficients

lacksquare The whole $\mathcal{A}_2^{(2\times0)}$ is known numerically

Czakon '08.

The coefficients D_i , E_i , F_i , and A are known analytically (agreement with num res)

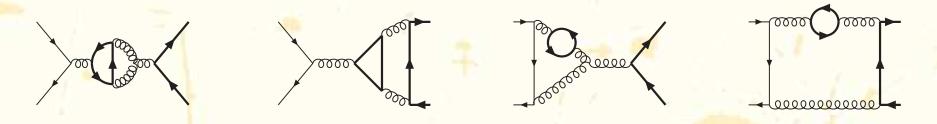
R. B., Ferroglia, Gehrmann, Maitre, and Studerus '08-'09

In the poles of $\mathcal{A}_2^{(2 imes 0)}$ (and therefore of B and C) are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang '09

Two-Loop Corrections to $q\bar{q} \rightarrow t\bar{t}$

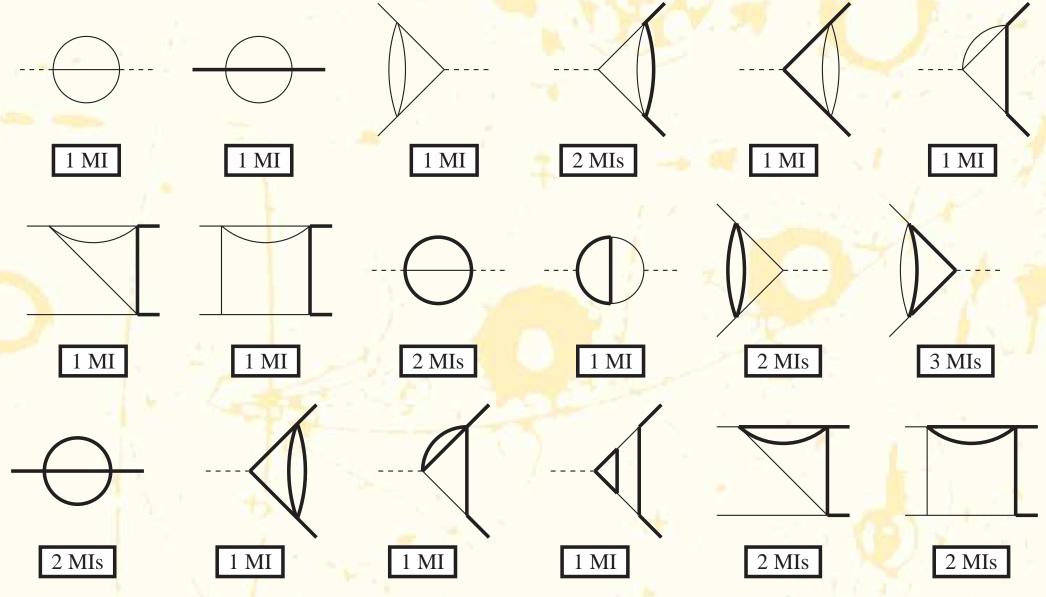
 D_i , E_i , F_i come from the corrections involving a closed (light or heavy) fermionic loop:



the leading-color coefficient, comes from the planar diagrams:

- The calculation is carried out analytically using:
 - Laporta Algorithm for the reduction of the dimensionally-regularized scalar integrals (in terms of which we express the $|\mathcal{M}|^2$) to the Master Integrals (MIs)
 - Differential Equations Method for the analytic solution of the MIs

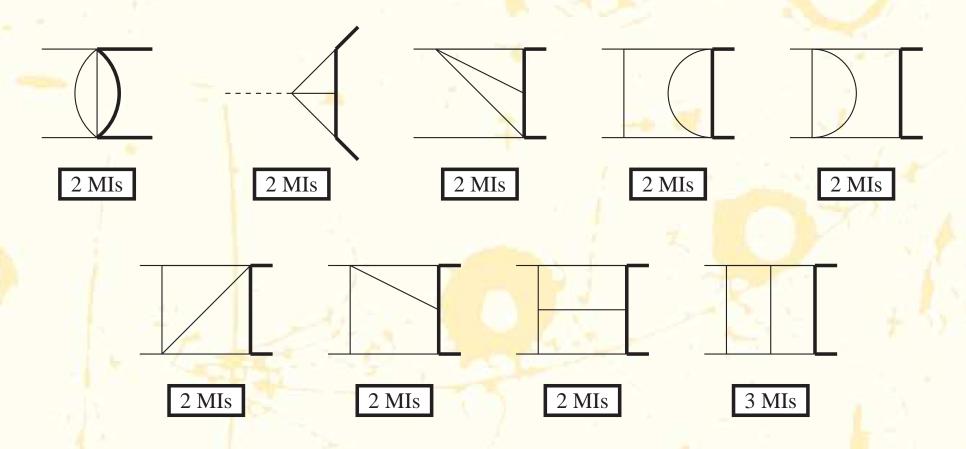
Master Integrals for N_l and N_h



18 irreducible two-loop topologies (26 Mls)

R. B., A. Ferroglia, T. Gehrmann, D. Maitre, and C. Studerus, JHEP 0807 (2008) 129.

Master Integrals for the Leading Color Coeff



For the leading color coefficient there are 9 additional irreducible topologies (19 Mls)

R. B., A. Ferroglia, T. Gehrmann, and C. Studerus, JHEP 0908 (2009) 067.

Example: Box for the Leading Color Coeff

$$= \frac{1}{m^6} \sum_{i=-4}^{-1} A_i \epsilon^i + \mathcal{O}(\epsilon^0)$$

$$\begin{array}{lll} A_{-4} & = & \dfrac{x^2}{24(1-x)^4(1+y)}\,, \\ A_{-3} & = & \dfrac{x^2}{96(1-x)^4(1+y)} \Big[-10G(-1;y) + 3G(0;x) - 6G(1;x) \Big]\,, \\ A_{-2} & = & \dfrac{x^2}{48(1-x)^4(1+y)} \Big[-5\zeta(2) - 6G(-1;y)G(0;x) + 12G(-1;y)G(1;x) + 8G(-1,-1;y) \Big]\,, \\ A_{-1} & = & \dfrac{x^2}{48(1-x)^4(1+y)} \Big[-13\zeta(3) + 38\zeta(2)G(-1;y) + 9\zeta(2)G(0;x) + 6\zeta(2)G(1;x) - 24\zeta(2)G(-1/y;x) \\ & + 24G(0;x)G(-1,-1;y) - 24G(1;x)G(-1,-1;y) - 12G(-1/y;x)G(-1,-1;y) \\ & -12G(-y;x)G(-1,-1;y) - 6G(0;x)G(0,-1;y) + 6G(-1/y;x)G(0,-1;y) + 6G(-y;x)G(0,-1;y) \\ & + 12G(-1;y)G(1,0;x) - 24G(-1;y)G(1,1;x) - 6G(-1;y)G(-1/y,0;x) + 12G(-1;y)G(-1/y,1;x) \\ & -6G(-1;y)G(-y,0;x) + 12G(-1;y)G(-y,1;x) + 16G(-1,-1,-1;y) - 12G(1,0,-1;y) \\ & -12G(0,-1,-1;y) + 6G(0,0,-1;y) + 6G(1,0,0;x) - 12G(1,0,1;x) - 12G(1,1,0;x) + 24G(1,1,1;x) \\ & -6G(-1/y,0,0;x) + 12G(-1/y,0,1;x) + 6G(-1/y,1,0;x) - 12G(-1/y,1,1;x) + 6G(-y,1,0;x) \\ & -12G(-y,1,1;x) \Big] \end{array}$$

Example: Box for the Leading Color Coeff

-12G(-y,1,1;x)

$$= \frac{1}{m^6} \sum_{i=-4}^{-1} A_i \epsilon^i + \mathcal{O}(\epsilon^0)$$

$$A_{-4} = \frac{x^2}{24(1-x)^4(1+y)},$$

$$A_{-3} = \frac{x^2}{96(1-x)^4(1+y)} \Big[-10G(-1;y) + 3G(0;x) - 6G \Big]$$

$$A_{-2} = \frac{x^2}{48(1-x)^4(1+y)} \Big[-5\zeta(2) - 6G(-1;y)G(0;x) + \Big]$$

$$A_{-1} = \frac{x^2}{48(1-x)^4(1+y)} \Big[-13\zeta(3) + 38\zeta(2)G(-1;y) + 9\zeta(2)G(0;x) + \frac{6\zeta(2)}{\beta} \underbrace{(1;x)}_{\beta} - 24\zeta(2)G(-1/y;x) + 24G(0;x)G(-1,-1;y) - 24G(1;x)G(-1,-1;y) - 12G(-1/x)G(-1,-1;y) - 12G(-1/x)G(-1,-1;y) + 6G(-1/x)G(-1,-1;y) + 6G(-1/x)G(-1$$

GHPLs

One- and two-dimensional Generalized Harmonic Polylogarithms (GHPLs) are defined as repeated integrations over set of basic functions. In the case at hand

$$f_w(x) = \frac{1}{x - w}, \quad \text{with} \quad w \in \left\{0, 1, -1, -y, -\frac{1}{y}, \frac{1}{2} \pm \frac{i\sqrt{3}}{2}\right\}$$
 $f_w(y) = \frac{1}{y - w}, \quad \text{with} \quad w \in \left\{0, 1, -1, -x, -\frac{1}{x}, 1 - \frac{1}{x} - x\right\}$

The weight-one GHPLs are defined as

$$G(0;x) = \ln x$$
, $G(w;x) = \int_0^x dt f_w(t)$

Higher weight GHPLs are defined by iterated integrations

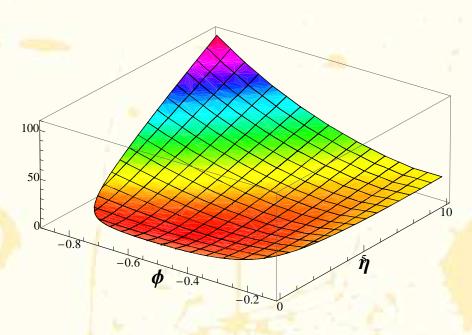
$$G(\underbrace{0,0,\cdots,0};x) = \frac{1}{n!} \ln^n x, \qquad G(w,\cdots;x) = \int_0^x dt f_w(t) G(\cdots;t)$$

Shuffle algebra. Integration by parts identities

Remiddi and Vermaseren '99, Gehrmann and Remiddi '01-'02, Aglietti and R. B. '03, Vollinga and Weinzierl '04, R. B., A. Ferroglia, T. Gehrmann, and C. Studerus '09

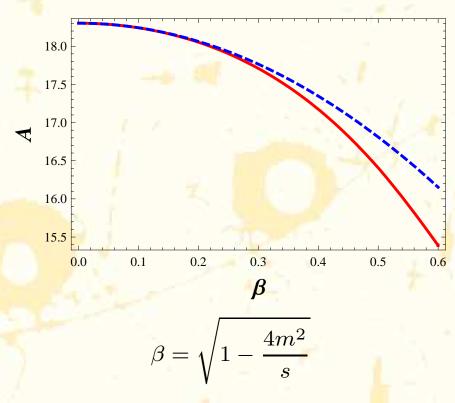
Coefficient A

Finite part of A



$$\eta = \frac{s}{4m^2} - 1, \quad \phi = -\frac{t - m^2}{s}$$

Threshold expansion versus exact result



partonic c.m. scattering angle = $\frac{\pi}{2}$

Numerical evaluation of the GHPLs with GiNaC C++ routines.

Vollinga and Weinzierl '04

Two-Loop Corrections to $gg \rightarrow t\bar{t}$

$$|\mathcal{M}|^{2}(s,t,m,\varepsilon) = \frac{4\pi^{2}\alpha_{s}^{2}}{N_{c}} \left[\mathcal{A}_{0} + \left(\frac{\alpha_{s}}{\pi}\right) \mathcal{A}_{1} + \left(\frac{\alpha_{s}}{\pi}\right)^{2} \mathcal{A}_{2} + \mathcal{O}\left(\alpha_{s}^{3}\right) \right]$$

$$\mathcal{A}_{2} = \mathcal{A}_{2}^{(2\times0)} + \mathcal{A}_{2}^{(1\times1)}$$

$$\mathcal{A}_{2}^{(2\times0)} = (N_{c}^{2} - 1) \left(N_{c}^{3} A + N_{c} B + \frac{1}{N_{c}} C + \frac{1}{N_{c}^{3}} D + N_{c}^{2} N_{l} E_{l} + N_{c}^{2} N_{h} E_{h} + N_{l} F_{l} + N_{h} F_{h} + \frac{N_{l}}{N_{c}^{2}} G_{l} + \frac{N_{h}}{N_{c}^{2}} G_{h} + N_{c} N_{l}^{2} H_{l} + N_{c} N_{h}^{2} H_{h} + N_{c} N_{h}^{2} H_{h} + \frac{N_{l} N_{h}}{N_{c}^{2}} I_{l} + \frac{N_{h}}{N_{c}^{2}} I_{h} + \frac{N_{l} N_{h}}{N_{c}^{2}} I_{lh} \right)$$

789 two-loop diagrams contribute to 16 different color coefficients

- No numeric result for $\mathcal{A}_2^{(2 imes0)}$ yet
- ullet The poles of $\mathcal{A}_2^{(2\times0)}$ are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang '09

The coefficients A, E_l – I_l can be evaluated analytically as for the $q\bar{q}$ channel

R. B., Ferroglia, Gehrmann, von Manteuffel and Studerus, in prep.

Conclusions

- In the last 15 years, Tevatron explored top-quark properties reaching a remarkable experimental accuracy. The top mass could be measured with $\Delta m_t/m_t=0.75\%$ and the production cross section with $\Delta \sigma_{t\bar{t}}/\sigma_{t\bar{t}}=9\%$. Other observables could be measured only with bigger errors.
- At the LHC the situation will further improve. The production cross section of $t\bar{t}$ pairs is expected to reach the accuracy of $\Delta\sigma_{t\bar{t}}/\sigma_{t\bar{t}}=5\%!!$
- This experimental precision demands for more accurate theoretical predictions. Quantum corrections have to be unavoidably taken into account.
- For the production cross section, $\sigma_{t\bar{t}}$, a complete NNLO analysis is mandatory in order to reach the experimental accuracy expected in 3-4 years from now.
- In spite of a big activity of different groups, many ingredients are still missing.
- In this talk I briefly reviewed the analytic evaluation of the two-loop matrix elements, afforded using the Laporta algorithm for the reduction to the MIs and the Differential Equations method for their analytic evaluation. To date, the corrections involving a fermionic loop (light or heavy) in the $q\bar{q}$ channel are completed, together with the leading color coefficient. Analogous corrections in the gg channel can be calculated with the same technique and are at the moment under study.