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Top Quark

» With amass of m; = 173.1 + 1.3 GeV, the TOP quark (the up-type quark of the third
generation) is the heaviest elementary particle produced so far at colliders.

® Because of its mass, top quark is going to play a unique role in understanding the EW
symmetry breaking = Heavy-Quark physics crucial at the LHC.
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® Top quark does not hadronize, since it decays in about 5 - 10~2°s (one order of magnitude
smaller than the hadronization time) —> opportunity to study the quark as single particle
$ Spin properties
® Interaction vertices

W
® Top quark mass

4/
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® Decay products: almost exclusively t — Wb (|Vip| > |Vial, [Visl) N,
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Top Quark @ Tevatron
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Top Quark @ Tevatron

Events measured at Tevatron

® pp— it — WToW —b — lvilvbb Dilepton ~ 10%'
oy ~ 7pb ® pp—tt — WTbW b - lugq'bb Lep+iets ~ 44%'
qq qq’ bb All jets ~ 46% |

2 high-pr lept, > 2 jets and ME

NO lept, > 6 jets and low ME

1 isol high-pr lept, > 4 jets and ME |
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Top Quark @ Tevatron

C N, ata N T
® Total Cross Section O = dat - bkIT 7.0+ 0.6 pb (m¢ = 175 GeV)
€

® Top-quark Mass me = 173.1 £1.3GeV (0.75%)

® W helicity fractions F; = B(t - bW T(Ay =i =—1,0,1)) (Fo+ Fy + F_ =1)

1 dI 3 3 3
fdcose* = ZF() Sin2 Q* L gF_(]. = COSQ*)Q AL gF-l-(]- —I—COSQ*)Q

Fo =0.66 £0.16 £0.05 F4 = —0.03£0.06 = 0.03

® Spin correlations measured fitting the double distribution

1 d’N 1(1 N . )
— = — Kk cos 01 cos
N dcos 01 dcos 05 4 - 2

—0.455 < k < 0.865 (68% CL)

® Forward-Backward Asymmetry Arp = (19.3 £ 6.5(sta) + 2.4(sys) )%
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LHC Perspectives

¥

Cross Section

® With 100pb~! of accumulated data an error of Ac,;/o,; ~ 15% is expected
(dominated by statistics!)

® After 5 years of data taking an error of Ao,z/o:; ~ 5% IS expected

Top Mass
® With 1fb~! Mass accuracy: Am: ~ 1 — 3 GeV

Top Properties

® W helicity fractions and spin correlations with 10fb~! = 1-5%

® Top-quark charge. With 1fb~! we could be able to determine Q; = 2/3 with an
accuracy of ~ 15%

Sensitivity to new physics
#® all the above mentioned points

® Narrow resonances: with 1fb~! possible discovery of a Z’ of M, ~ 700 GeV with
Opp—Z/ —tt ™ 11 pb
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Top-Anti Top Pair Production

According to the factorization theorem, the process | h1 + hs — tt + X |can be sketched as in

the figure:

hi{p}

hQ{paﬁ}

» 1 1
Thy by = Z/O dml/O dx2 fry i (21, F) fry,j (T2, uF) Gij (8, mt, as(UR), UF, UR)
0]

s = (ph1 —|—ph2)2 , 8§ =x1T28
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The Partonic Cross Section: Tree-Level

q(p1) + @(p2) — t(p3) + t(pa)

Dominant at Tevatron
~ 85%

g(p1) + g(p2) — t(p3) + t(pa)

q t
q t
g t
TOO00 p—P—
A
TOO00
g t

ocLO(LHC, m = 171 GeV) = 583 pb + 30%

—p———
1 Dominant at LHC

~ 90%
T

cLO(Tev,my = 171 GeV) = 5.92pb + 44%
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The Partonic Cross Section: NLO

Fixed Order

® The NLO QCD corrections are quite sizable: + 25% at Tevatron and +50% at LHC.

Scales variation +15%. Nason, Dawson, Ellis '88-'90; Beenakker, Kuijf, van Neerven, Smith '89-'91;
Mangano, Nason, Ridolfi '92; Frixione et al. '95; Czakon and Mitov '08.

» Mixed NLO QCD-EW corrections are small: - 1% at Tevatron and -0.5% at LHC.

Beenakker et al. '94 Bernreuther, Fuecker, and Si '05-'08
Kuhn, Scharf, and Uwer '05-'06; Moretti, Nolten, and Ross '06.

All-order Soft-Gluon Resummation

K Leading-Logs (LL) Laenen et al. '92-'95; Berger and Contopanagos '95-'96; Catani et al. '96.
K Next-to-Leading-Logs (N LL) Kidonakis and Sterman '97; R. B., Catani, Mangano, and Nason '98.

® Next-to-Next-to-Leading-Logs (NNLL) under study.
Moch and Uwer '08; Beneke et al. '09; Czakon et al. '09; Kidonakis '09

o +0.30(3.9% +0.53(7%
agL tNLL(Tev, my = 171 GeV, CTEQ6.5) = 7.61 _0.5326.9%§ (scales) _0.3624.8?%) (PDFs) pb

o 1+82(9.0% 1+30(3.3%
o VOTNEE(LHC, my = 171 GeV, CTEQS.5) = 908 T2200070 (scales) T5063-27%) (PDFs) pb

M. Cacciari, S. Frixione, M. Mangano, P. Nason, and G. Ridolfi, JHEP 0809:127,2008
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Measurement Requirements foro,;

Experimental requirements for o,;:

® Tevatron Ac/o ~ 10% = ~ ok with the theory!
® |HC (14 TeV, high luminosity) Ac /o ~ 5% < NLO theoretical prediction!!

Kidonakis-Vogt and Moch-Uwer, Langenfeld-Moch-Uwer, presented recently
approximated NNLO results for o, including

» scale dependence at NNLO

$ NNLL soft-gluon contributions

®» Coulomb corrections

This drastically reduces the uncertainty (factorization/renormalization scale dependence) to the

level predicted for LHC: | ~ 4 — 6% |, and indicate that a COMPLETE NNLO computation is
indeed needed in order to match the experimental precision of LHC.
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Next-to-Next-to-Leading Order

The NNLO calculation of the top-quark pair hadro-production requires several ingredients:

» Virtual Corrections
#® two-loop matrix elements for qg — ¢t and gg — tt

#® interference of one-loop diagrams
Korner et al. '05-'08; Anastasiou and Aybat '08

®» Real Corrections
#® one-loop matrix elements for the hadronic production of ¢z + 1 parton
#® tree-level matrix elements for the hadronic production of ¢t + 2 partons

Dittmaier, Uwer and Weinzierl '07-'08

®» Subtraction Terms
#» Both matrix elements known for ¢t + 5 calculation, BUT subtraction up to 1
unresolved parton, while in a complete NNLO computation of o,; we need
subtraction terms with up to 2 unresolved partons.

—  Need an extension of the subtraction methods at the NNLO.
Gehrmann-De Ridder, Ritzmann '09, Daleo et al. '09,
Boughezal et al. '10, Glover, Pires '10

Very recently: for double real in .z, method proposed by Czakon, arXiv:1005.0274

ICHEP Paris, July 23, 2010 — p.11/20



Next-to-Next-to-Leading Order

The NNLO calculation of the top-quark pair hadro-production requires several ingredients:

» \Virty

Korner et al. '05-'08; Anastasiou and Aybat '08

®» Real Corrections
#® one-loop matrix elements for the hadronic production of ¢z + 1 parton
#® tree-level matrix elements for the hadronic production of ¢t + 2 partons

Dittmaier, Uwer and Weinzierl '07-'08

®» Subtraction Terms
#» Both matrix elements known for ¢t + 5 calculation, BUT subtraction up to 1
unresolved parton, while in a complete NNLO computation of o,; we need
subtraction terms with up to 2 unresolved partons.

—  Need an extension of the subtraction methods at the NNLO.
Gehrmann-De Ridder, Ritzmann '09, Daleo et al. '09,
Boughezal et al. '10, Glover, Pires '10

Very recently: for double real, method proposed by Czakon, arXiv:1005.0274

ICHEP Paris, July 23, 2010 — p.11/20



Two-Loop Corrections to qg — tt

(8

IM|? (s, t,m, e) = rer {Ao + (%) Aq + (%)2./42 + O (ag)]

ARXO) NCCF[N§A+B+

218 two-loop diagrams

® The whole A$**? is known numerically

Ne

T T

AQZAgQXO)—FAéle)

¢  n(n.D + &
N2 l cl/] Nc

C

E
+Np, (Nth 4 Fh) + N2F, + NN Fyp, + N}%Fh]

contribute to the

10

C

different color coefficients

Czakon '08.

® The coefficients D;, E;, F;, and A are known analytically (agreement with num res)

R. B., Ferroglia, Gehrmann, Maitre, and Studerus '08-'09

® The poles of AgM) (and therefore of B and C) are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang '09
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Two-Loop Corrections to qg — tt

® | D, E;, F; |come from the corrections involving a closed (light or heavy) fermionic loop:

ol >~ e T

® | A |the leading-color coefficient, comes from the planar diagrams:

ol ol
- -
l
&%

® The calculation is carried out analytically using:

#® Laporta Algorithm for the reduction of the dimensionally-regularized scalar integrals
(in terms of which we express the | M|?) to the Master Integrals (Mls)

#® Differential Equations Method for the analytic solution of the Mls
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Master Integrals for IN; and Ny,

& D {{

5, =
S <Q 4« I T

2Mils 1M 1 Ml 1 Ml 2 Mls 2 Mls

18 irreducible two-loop topologies (26 MIs)
R. B., A. Ferroglia, T. Gehrmann, D. Maitre, and C. Studerus, JHEP 0807 (2008) 129.
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Master Integrals for the Leading Color Coeftf

/

------ (N I

2Mls 2Mls 2Mls 2Mls 2Mls

2Mls 2Mls 2Mls 3 Mls

For the leading color coefficient there are 9 additional irreducible topologies (19 MIs)

R. B., A. Ferroglia, T. Gehrmann, and C. Studerus, JHEP 0908 (2009) 067.
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Example: Box for the Leading Color Coeff

—1
1 .
m= i——4

:B2

24(1 — z)4(1 +y)

:B2

96(1 — z)*(1 +y)

[_100(—1; y) +3G(0;z) — 6G(1; w)] 7

x2

48(1 — 2)4(1 + v)

:122

48(1 — )4 (1 + v)
+24G(0; z)G(—1, —1;9) — 24G(L; 2)G(—-1, —1;9) — 12G (—1/y; ) G(—1, —1;y)

—12G(~y; z)G(—1, —1;y) — 6G(0; 2)G(0, —1;y) + 6G (—1/y;x) G(0, —1;y) + 6G(—y; )G (0, —1; y)
+12G(—-1;y)G(1,0;z) — 24G(—1;y)G(1, ;) — 6G(—1;9)G (—1/y,0;z) + 12G(—1;9)G (—1/y, 1; x)
—6G(—L;y)G(—y,0;z) + 12G(—1;%)G(—vy, 1;z) + 16G(=1, -1, —1;y) — 12G(—U, G- I; )

—12G(0, —1, —1;y) + 6G(0,0, —1;y) + 6G(1,0,0; ) — 12G(1,0, 1;2) — 12G(1,1,0; ) + 24G(1, 1, 1; z)
—6G (—1/y,0,0;z) + 12G (—1/y,0,1;z) + 6G (—1/y,1,0;z) — 12G (—1/y,1,1;z) + 6G(—y, 1,0; x)

[—5¢(2) — 6G(1;9)G(0; 2) +12G(- 1; 1) G(1; 2) +8G (- 1,~1; )],

[—13¢(3) + 38¢(2)G (=13 y) + 9¢(2)G(0; 2) + 6¢(2)G (15 @) — 24¢(2)G (—1/y; )

—12G(—y, 1,1; )]

ICHEP Paris, July 23, 2010 — p.16/20
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—6G (—1/y,0,0;z) + 12G (—1/y,0,1;z) + 6G (—1/y,1,0;z) — 12G (—1/y,1,1;z) + 6G(—y, 1,0; x)

[—10G(—1; y) + 3G(0; ) — 6(

1- and 2-dim GHPLs

[—5¢(2) — 6G(—1;9)G(0; ) +]

[—13¢(3) + 38C(G(~15) + 9()G(0; 2) + 6 QM1 2) — 24¢(2)G (~1/y;2)

~12G(-y, 1, 15 2)]
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GHPLs

9

One- and two-dimensional Generalized Harmonic Polylogarithms (GHPLS) are defined
as repeated integrations over set of basic functions. In the case at hand

1 : 1 1 )
f’w(x) — ) Wlth w € {0717_17_3/7__7_:&@}
T —w Yy 2 2
1 : 1 1
fwly) = ——, with wE{O,l,—l,—x,——,l———x}
Yy —w x x
The weight-one GHPLs are defined as
G(0;x) =Inx, G(w;z) = / dt fu (1)
0
Higher weight GHPLs are defined by iterated integrations
1 T
G(0707707$):_'1nn$7 G(w77m):/ dtfw(t)G(:t)
\ -~ J/ ’rL. O

Shuffle algebra. Integration by parts identities

Remiddi and Vermaseren '99, Gehrmann and Remiddi '01-'02, Aglietti and R. B. '03,
Vollinga and Weinzierl '04, R. B., A. Ferroglia, T. Gehrmann, and C. Studerus '09
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Coefficient A

Finite part of A Threshold expansion versus exact result

18.0F
175¢
17.0F
<
16.5F
16.0 |

155} ]

0.0 0.1 0.2 0.3 0.4 0.5 0.6

4m?
S t —m? B=14/1- -
n = —1 ) (b - -

. . | =
partonic c.m. scattering angle = 2

Numerical evaluation of the GHPLs with GiNaC C++ routines.
Vollinga and Weinzierl '04
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Two-Loop Corrections to gg — tt

LNﬂQ(&t,nue)::

Ag2><0)

A2
Ne

2

c {Ao + (=) A+ (%)QAQ +0 (ai)]

7 T

AQZAgQXO)—I—Angl)

1 1
(N?2 - 1) (NSA + N.B + FC + FD + N2N,E; + N*N, E),
C

+NF + Ny Fy, +

C
Ny
NZ

Np,

~3Cn+ N.N?H; + N.NZH),
C

G+

2

N; N7 NNy,
+N N NpHjp + — I + — 1y + Iip,

789 two-loop diagrams

contribute to

16

® No numeric result for A3*?) yet

different color coefficients

® The poles of A7?*? are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang '09

® The coefficients A, E;—I; can be evaluated analytically as for the ¢g channel

R. B., Ferroglia, Gehrmann, von Manteuffel and Studerus, in prep.
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Conclusions

9

L

In the last 15 years, Tevatron explored top-quark properties reaching a remarkable
experimental accuracy. The top mass could be measured with Am/m: = 0.75% and the
production cross section with Ao,z/o:; = 9%. Other observables could be measured
only with bigger errors.

At the LHC the situation will further improve. The production cross section of ¢¢ pairs is
expected to reach the accuracy of Ao,z/oz = 5%!!

This experimental precision demands for more accurate theoretical predictions. Quantum
corrections have to be unavoidably taken into account.

For the production cross section, o,z, a complete NNLO analysis is mandatory in order to
reach the experimental accuracy expected in 3-4 years from now.

In spite of a big activity of different groups, many ingredients are still missing.

In this talk | briefly reviewed the analytic evaluation of the two-loop matrix elements,
afforded using the Laporta algorithm for the reduction to the Mls and the Differential
Equations method for their analytic evaluation. To date, the corrections involving a
fermionic loop (light or heavy) in the ¢q channel are completed, together with the leading
color coefficient. Analogous corrections in the gg channel can be calculated with the
same technique and are at the moment under study.
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