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‘ Introduction - SM Yukawa Couplingsl

e SM has 9 complex Yukawa couplings between
Higgs and charge 2/3 quarks - written as a
3 X 3 matrix, U.

e 9 more for charge -1/3 quarks, D.

e Together determine the quark masses and

Veoku mixing angles
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‘ Introduction - SM Yukawa Couplingsl

e SM has 9 complex Yukawa couplings between
Higgs and charge 2/3 quarks - written as a 7

3 x 3 matrix, U. " 7

Y

CR
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e 9 more for charge -1/3 quarks, D.
e Together determine the quark masses and

Vokm mixing angles
e Useful to define also their Hermitian-squares:
U=UU:; D =D'D
e With Dirac vs, story is similar, with Hermitian-squared mass matrices, £ and N/

for charged leptons and vs respectively.
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‘ Renormalisation Group Evolution of Yukawa Couplingsl

e Coupling constants evolve with energy scale according to 1st order differential RG

equations
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‘ Renormalisation Group Evolution of Yukawa Couplingsl

e Coupling constants evolve with energy scale according to 1st order differential RG

equations

e One-loop RGEs of the Yukawa couplings given as matrix equations:

dU 3 dD 3
U~ — —-U-D); D '—= -(D-U
where
17 9 5 9
Yo =T — (1291+492‘|‘893>) Ya =1 — (1291+492+893>
with:

T=Tr(3U+3D+N+L).
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‘ Renormalisation Group Evolution of Yukawa Couplingsl

e Coupling constants evolve with energy scale according to 1st order differential RG

equations
e One-loop RGEs of the Yukawa couplings given as matrix equations:

dU 3 dD 3

Ul— =~,+=U-D); D' — = —(D-U
where
17 9 5 9
Yo =T — (1291+492‘|‘893>) Ya =1 — (1291+492+893>
with:

T=Tr(3U+3D+N+L).

e Control how the quark masses and mixing angles evolve

e Analogous equations for leptons in Dirac v case
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‘ Evolution of Yukawa Couplings (cont.)I

e Above RGEs for Yukawas are coupled and non-linear.
e Can be solved for observables at high (eg. GUT) scales

e But exptl. errors in poorly-known observables feed into solns. for others, rendering

their high-energy values poorly-determined

e eg. my known to 1.7% at mz, but only to 5.4% at Mgyt
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| RG Evolution Invariantsl

Recent interest in RG evolution invariants, observables which do not evolve with energy.
Useful features:

e Exptly.-determined values (at eg. weak scale) are valid at all scales.

e Exptl. errors (at eg. weak scale) are valid at all scales.

e Could simplify solution of evolution equations (fewer coupled equations to solve).
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| RG Evolution Invariantsl

Recent interest in RG evolution invariants, observables which do not evolve with energy.
Useful features:

e Exptly.-determined values (at eg. weak scale) are valid at all scales.

e Exptl. errors (at eg. weak scale) are valid at all scales.

e Could simplify solution of evolution equations (fewer coupled equations to solve).
However,

e Before now, ONLY approximate invariants found, eg. assuming NO quark mixing,

or ignoring light quarks
e Most emphasis on BSM examples, rather than SM

We will derive EXACT evolution invariants in the SM (at one-loop order).

They will relate masses and mixings in a new way.
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‘ Eigenvalues of LIDI

Eigenvalues, );, of the product matrix D are given by its eigenvalue equation:
)\g)—Tup°)\,L2—|—Pup'>\i—DUD:O
where coefficients

1
Typ = Tr(UD); Pyp = §(T'r2(Z/{D) —Tr(UD)?); Dyp = Det(UD)
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‘ Eigenvalues of LIDI

Eigenvalues, );, of the product matrix D are given by its eigenvalue equation:
)\g)—Tup°)\,L2—|—Pup'>\i—DUD:O
where coefficients

1
Typ = Tr(UD); Pyp = 5(Ter(m)) —Tr(UD)?); Dyp = Det(UD)

They have pure RGEs (unlike for U and D separately):

d1;

difm = 2(Vu + va)Tup
dP,

dZZD = 4(Yu + va) Pup
dD

dzt/m = 6(7u + va) Dup
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‘ Eigenvalues of LIDI

Eigenvalues, A;, of the product matrix D are given by its eigenvalue equation:
N —Typ X+ Pyp - N\i — Dyp =0
where coefficients

1
Typ = Tr(UD); Pyp = §(T'r2(Z/{D) —Tr(UD)?); Dyp = Det(UD)

They have pure RGEs (unlike for U and D separately):

d1;
dUD — 2(7u + W/d)TZ/ID
{
d P
de = 4(vy + va) Pup
{
dD
dzt/{D = 6(7u + Va) Dup

So, eigenvalues, );, of UD have pure evolutions with coefficient 2(~y, +v4) - new result.
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‘ Exact One Loop Evolution Invariants in the SMI

The three UD coefficients have pure evolutions with rate proportional to their order.

May thus form two independent “dimensionless” combinations which are exact

one-loop evolution invariants:

T B dZ} dZ?}
71, = Z’ip ; 11 = L;D; with —= = —2 =0,
3 3 dt dt
Dy Do
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‘ Exact One Loop Evolution Invariants in the SMI

The three UD coefficients have pure evolutions with rate proportional to their order.
May thus form two independent “dimensionless” combinations which are exact

one-loop evolution invariants:

T; P Az,  dT%
70 =42 ge =42 gith —2 = P2 ),
3 3 dt dt
DL{D DL{D

May be evaluated in terms of the conventional mass and CKM observables:

2 2
2 2 3 3
m m; My Ty My M1y
I;ZD — E , ( = : ) |Vai|2 = ( COS2623 ~ 108,
ATy Ty My, T TN Mg

aF By iFIFk
2 2
Mg~ MMy \ 3 My M Mp Mg \ 3
Lo = Z ( 7;812 - ;nQ ) Vai|? (m mc - ms) cos?f12 ~ 10°,
a# B i 7k « ¢ u Hou 1T o

evaluated at leading order in small mass ratios.

University of Warwick 23rd July 2010

Paul Harrison



‘ Experimental Values of Z7  and IgDI

10"}

10° 3

16 e T

108 10’ 108 10° 1010

Evaluated using experimental values of quark masses and mixings (renormalised to the

weak scale by Xing et al., PRD 77, 113016 (2008)).
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‘ An Application - Coincident VaIues?I

e 7!, and 7}, are independent combinations of quark masses and mixings
e Could have taken any values in nature.

e Experimentally:

2
q 9 2\ > 9
IPD - me, my 3 cos 823 +1.1
MMy MMy o
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‘ An Application - Coincident VaIues?I

e 7!, and 7}, are independent combinations of quark masses and mixings
e Could have taken any values in nature.

e Experimentally:

2
q 9 2\ > 9
IPD - me, my 3 cos 823 +1.1
MMy MMy o

e It's a mystery why their values are so similar

e Feature seems to require an unnatural level of fine-tuning - an accident of Nature?
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[ What if Z7, = 77,7

e Can be shown that if Z7, = 77, then the spectrum of UD is exactly geometric!

Ao A3
I;,{D :IIZD — )\_1 — )\_2

e Eigenvalue ratios are also one-loop evolution invariants = geometric hierarchy
at all energy scales.

e Data are thus consistent with spectrum of UD being geometric at all scales

e Suggestive that some New Physics at a high scale requires a geometric spectrum

for UD.
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‘ Readily Generalised to the Leptonsl

For the leptons, in Dirac v case, T, — Z%_, and I3, — T%, with Y — N and

TD?

D — L, v, — v and 74 — Y.
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‘ Readily Generalised to the LeptonsI

For the leptons, in Dirac v case, T, — Z%_, and I3, — T%, with Y — N and

D — L, v, — v and 74 — Y.
Also find two evolution invariants linking quarks, leptons and gauge couplings:

q  __ DGt(Z/{D) _% _%
prod = Dog(N L)L O3

Det?|U, D]Det| N, L] _sL =

T4 — _ T 82,38
Det?(UD)Det* (N L)

comim

g1 "G99 -

12
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‘ Summary/ConcIusionsI

e Have derived for first time, exact one-loop RG invariants in the SM connecting

masses and mixings
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‘ Summary/ConcIusionsI

e Have derived for first time, exact one-loop RG invariants in the SM connecting

masses and mixings
e Product matrix UD plays a special role in their formulation

e Peculiar to the SM? - have not been able to obtain similar results in MSSM or

2HDM
e Why? Related to simplicty of SM - a single Higgs and thus a single vev
e Analogous results for the leptonic sector, plus two mixed Q/L invariants

e The data are compatible with a geometric hierarchy in eigenvalues of UD at all

scales, suggestive of New Physics

e More details in arXiv/1007.3810 [hep-ph]
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BACKUP SLIDES
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‘ Charge g Quark Masses - Eigenvalues of Lll

Given by its eigenvalue equation:

N~ Ty - N+ Py - N — Dy =0

where
1
Ty=TrUU);, Py= i(TTQ(L{) —Tr(Ud?)); Dy = Det(U)

But RGEs of the coefficients are complicated:

d1;

d—t“ — 27, Ty + 3(T% — 2P, — Tr(UD))

dPy, 1

dD

— = = 3Du(2y, + Ty — Tp)

So, evolution of the eigenvalues of I/ depends in a complicated way on the eigenvalues

of U, D and on elements of Vg . Similar conclusion for e/values of D.
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