Quark and Lepton Evolution Invariants in the Standard Model

Paul Harrison*

University of Warwick

International Conference on High Energy Physics,
Paris, 23rd July 2010

* With Rama Krishnan and Bill Scott, arXiv:1007.3810 [hep-ph]

Paul Harrison University of Warwick 23rd July 2010

Outline of Talk

- Introduction SM Yukawa Couplings
- Evolution of Yukawa Couplings
- RG Evolution Invariants
- Exact One-Loop Evolution Invariants in the SM
- Summary and Conclusions

Introduction - SM Yukawa Couplings

- SM has 9 complex Yukawa couplings between Higgs and charge 2/3 quarks written as a 3×3 matrix, U.
- 9 more for charge -1/3 quarks, D.
- ullet Together determine the quark masses and V_{CKM} mixing angles

Introduction - SM Yukawa Couplings

- SM has 9 complex Yukawa couplings between Higgs and charge 2/3 quarks written as a 3×3 matrix, U.
- u_L U_{uc} c_R

- 9 more for charge -1/3 quarks, D.
- ullet Together determine the quark masses and V_{CKM} mixing angles
- Useful to define also their Hermitian-squares:

$$\mathcal{U} = U^{\dagger}U; \qquad \mathcal{D} = D^{\dagger}D$$

• With Dirac ν s, story is similar, with Hermitian-squared mass matrices, \mathcal{L} and \mathcal{N} for charged leptons and ν s respectively.

Renormalisation Group Evolution of Yukawa Couplings

Coupling constants evolve with energy scale according to 1st order differential RG equations

Paul Harrison University of Warwick 23rd July 2010

Renormalisation Group Evolution of Yukawa Couplings

- Coupling constants evolve with energy scale according to 1st order differential RG equations
- One-loop RGEs of the Yukawa couplings given as matrix equations:

$$U^{-1}\frac{dU}{dt} = \gamma_u + \frac{3}{2}(\mathcal{U} - \mathcal{D}); \qquad D^{-1}\frac{dD}{dt} = \gamma_d + \frac{3}{2}(\mathcal{D} - \mathcal{U})$$

where

$$\gamma_u = T - (\frac{17}{12}g_1^2 + \frac{9}{4}g_2^2 + 8g_3^2); \qquad \gamma_d = T - (\frac{5}{12}g_1^2 + \frac{9}{4}g_2^2 + 8g_3^2),$$

with:

$$T = Tr(3\mathcal{U} + 3\mathcal{D} + \mathcal{N} + \mathcal{L}).$$

Renormalisation Group Evolution of Yukawa Couplings

- Coupling constants evolve with energy scale according to 1st order differential RG equations
- One-loop RGEs of the Yukawa couplings given as matrix equations:

$$U^{-1}\frac{dU}{dt} = \gamma_u + \frac{3}{2}(\mathcal{U} - \mathcal{D}); \qquad D^{-1}\frac{dD}{dt} = \gamma_d + \frac{3}{2}(\mathcal{D} - \mathcal{U})$$

where

$$\gamma_u = T - (\frac{17}{12}g_1^2 + \frac{9}{4}g_2^2 + 8g_3^2); \qquad \gamma_d = T - (\frac{5}{12}g_1^2 + \frac{9}{4}g_2^2 + 8g_3^2),$$

with:

$$T = Tr(3\mathcal{U} + 3\mathcal{D} + \mathcal{N} + \mathcal{L}).$$

- Control how the quark masses and mixing angles evolve
- ullet Analogous equations for leptons in Dirac u case

Evolution of Yukawa Couplings (cont.)

- Above RGEs for Yukawas are coupled and non-linear.
- Can be solved for observables at high (eg. GUT) scales
- But exptl. errors in poorly-known observables feed into solns. for others, rendering their high-energy values poorly-determined
- ullet eg. m_t known to 1.7% at m_Z , but only to 5.4% at M_{GUT}

RG Evolution Invariants

Recent interest in RG evolution invariants, observables which do not evolve with energy.

Useful features:

- Exptly.-determined values (at eg. weak scale) are valid at all scales.
- Exptl. errors (at eg. weak scale) are valid at all scales.
- Could simplify solution of evolution equations (fewer coupled equations to solve).

RG Evolution Invariants

Recent interest in *RG* evolution invariants, observables which do not evolve with energy.

Useful features:

- Exptly.-determined values (at eg. weak scale) are valid at all scales.
- Exptl. errors (at eg. weak scale) are valid at all scales.
- Could simplify solution of evolution equations (fewer coupled equations to solve).

However,

- Before now, ONLY approximate invariants found, eg. assuming NO quark mixing, or ignoring light quarks
- Most emphasis on BSM examples, rather than SM

RG Evolution Invariants

Recent interest in *RG* evolution invariants, observables which do not evolve with energy.

Useful features:

- Exptly.-determined values (at eg. weak scale) are valid at all scales.
- Exptl. errors (at eg. weak scale) are valid at all scales.
- Could simplify solution of evolution equations (fewer coupled equations to solve).

However,

- Before now, ONLY approximate invariants found, eg. assuming NO quark mixing, or ignoring light quarks
- Most emphasis on BSM examples, rather than SM

We will derive EXACT evolution invariants in the SM (at one-loop order).

They will relate masses and mixings in a new way.

Eigenvalues of \mathcal{UD}

Eigenvalues, λ_i , of the product matrix \mathcal{UD} are given by its eigenvalue equation:

$$\lambda_i^3 - T_{\mathcal{U}\mathcal{D}} \cdot \lambda_i^2 + P_{\mathcal{U}\mathcal{D}} \cdot \lambda_i - D_{\mathcal{U}\mathcal{D}} = 0$$

where coefficients

$$T_{\mathcal{U}\mathcal{D}} = Tr(\mathcal{U}\mathcal{D}); \quad P_{\mathcal{U}\mathcal{D}} = \frac{1}{2}(Tr^2(\mathcal{U}\mathcal{D}) - Tr(\mathcal{U}\mathcal{D})^2); \quad D_{\mathcal{U}\mathcal{D}} = Det(\mathcal{U}\mathcal{D})$$

Eigenvalues of \mathcal{UD}

Eigenvalues, λ_i , of the product matrix \mathcal{UD} are given by its eigenvalue equation:

$$\lambda_i^3 - T_{\mathcal{U}\mathcal{D}} \cdot \lambda_i^2 + P_{\mathcal{U}\mathcal{D}} \cdot \lambda_i - D_{\mathcal{U}\mathcal{D}} = 0$$

where coefficients

$$T_{\mathcal{UD}} = Tr(\mathcal{UD}); \quad P_{\mathcal{UD}} = \frac{1}{2}(Tr^2(\mathcal{UD}) - Tr(\mathcal{UD})^2); \quad D_{\mathcal{UD}} = Det(\mathcal{UD})$$

They have pure RGEs (unlike for \mathcal{U} and \mathcal{D} separately):

$$\frac{dT_{\mathcal{UD}}}{dt} = 2(\gamma_u + \gamma_d)T_{\mathcal{UD}}$$

$$\frac{dP_{\mathcal{UD}}}{dt} = 4(\gamma_u + \gamma_d)P_{\mathcal{UD}}$$

$$\frac{dD_{\mathcal{UD}}}{dt} = 6(\gamma_u + \gamma_d)D_{\mathcal{UD}}$$

Eigenvalues of \mathcal{UD}

Eigenvalues, λ_i , of the product matrix \mathcal{UD} are given by its eigenvalue equation:

$$\lambda_i^3 - T_{\mathcal{UD}} \cdot \lambda_i^2 + P_{\mathcal{UD}} \cdot \lambda_i - D_{\mathcal{UD}} = 0$$

where coefficients

$$T_{\mathcal{UD}} = Tr(\mathcal{UD}); \quad P_{\mathcal{UD}} = \frac{1}{2}(Tr^2(\mathcal{UD}) - Tr(\mathcal{UD})^2); \quad D_{\mathcal{UD}} = Det(\mathcal{UD})$$

They have pure RGEs (unlike for \mathcal{U} and \mathcal{D} separately):

$$\frac{dT_{\mathcal{UD}}}{dt} = 2(\gamma_u + \gamma_d)T_{\mathcal{UD}}$$

$$\frac{dP_{\mathcal{UD}}}{dt} = 4(\gamma_u + \gamma_d)P_{\mathcal{UD}}$$

$$\frac{dD_{\mathcal{UD}}}{dt} = 6(\gamma_u + \gamma_d)D_{\mathcal{UD}}$$

So, eigenvalues, λ_i , of \mathcal{UD} have pure evolutions with coefficient $2(\gamma_u + \gamma_d)$ - new result.

Paul Harrison

University of Warwick

23rd July 2010

Exact One Loop Evolution Invariants in the SM

The three \mathcal{UD} coefficients have pure evolutions with rate proportional to their order.

May thus form two independent "dimensionless" combinations which are exact one-loop evolution invariants:

$$\mathcal{I}_{TD}^q \equiv \frac{T_{\mathcal{UD}}}{D_{\mathcal{UD}}^{\frac{1}{3}}}; \qquad \mathcal{I}_{PD}^q \equiv \frac{P_{\mathcal{UD}}}{D_{\mathcal{UD}}^{\frac{2}{3}}}; \qquad \text{with } \frac{d\mathcal{I}_{TD}^q}{dt} = \frac{d\mathcal{I}_{PD}^q}{dt} = 0.$$

Exact One Loop Evolution Invariants in the SM

The three \mathcal{UD} coefficients have pure evolutions with rate proportional to their order.

May thus form two independent "dimensionless" combinations which are exact one-loop evolution invariants:

$$\mathcal{I}_{TD}^q \equiv \frac{T_{\mathcal{UD}}}{D_{\mathcal{UD}}^{\frac{1}{3}}}; \qquad \mathcal{I}_{PD}^q \equiv \frac{P_{\mathcal{UD}}}{D_{\mathcal{UD}}^{\frac{2}{3}}}; \qquad \text{with } \frac{d\mathcal{I}_{TD}^q}{dt} = \frac{d\mathcal{I}_{PD}^q}{dt} = 0.$$

May be evaluated in terms of the conventional mass and CKM observables:

$$\mathcal{I}_{TD}^{q} = \sum_{\alpha \neq \beta \neq \gamma, i \neq i \neq k} \left(\frac{m_{\alpha}^{2}}{m_{\beta} m_{\gamma}} \frac{m_{i}^{2}}{m_{j} m_{k}} \right)^{\frac{2}{3}} |V_{\alpha i}|^{2} \simeq \left(\frac{m_{t}}{m_{u}} \frac{m_{t}}{m_{c}} \frac{m_{b}}{m_{d}} \frac{m_{b}}{m_{s}} \right)^{\frac{2}{3}} \cos^{2}\theta_{23} \sim 10^{8};$$

$$\mathcal{I}_{PD}^{q} = \sum_{\alpha \neq \beta \neq \gamma, i \neq i \neq k} \left(\frac{m_{\beta} m_{\gamma}}{m_{\alpha}^{2}} \frac{m_{j} m_{k}}{m_{i}^{2}} \right)^{\frac{2}{3}} |V_{\alpha i}|^{2} \simeq \left(\frac{m_{t}}{m_{u}} \frac{m_{c}}{m_{u}} \frac{m_{b}}{m_{d}} \frac{m_{s}}{m_{d}} \right)^{\frac{2}{3}} \cos^{2}\theta_{12} \sim 10^{8},$$

evaluated at leading order in small mass ratios.

Paul Harrison University of Warwick 23rd July 2010

Experimental Values of $\mathcal{I}^q_{_{TD}}$ and $\mathcal{I}^q_{_{PD}}$

Evaluated using experimental values of quark masses and mixings (renormalised to the weak scale by Xing et al., PRD 77, 113016 (2008)).

An Application - Coincident Values?

- ullet \mathcal{I}^q_{TD} and \mathcal{I}^q_{PD} are independent combinations of quark masses and mixings
- Could have taken any values in nature.
- Experimentally:

$$\frac{\mathcal{I}_{PD}^q}{\mathcal{I}_{TD}^q} \approx \left(\frac{m_c^2}{m_t m_u} \frac{m_s^2}{m_b m_d}\right)^{\frac{2}{3}} \frac{\cos^2 \theta_{23}}{\cos^2 \theta_{12}} = 0.7_{-0.4}^{+1.1}.$$

An Application - Coincident Values?

- ullet \mathcal{I}^q_{TD} and \mathcal{I}^q_{PD} are independent combinations of quark masses and mixings
- Could have taken any values in nature.
- Experimentally:

$$\frac{\mathcal{I}_{PD}^q}{\mathcal{I}_{TD}^q} \approx \left(\frac{m_c^2}{m_t m_u} \frac{m_s^2}{m_b m_d}\right)^{\frac{2}{3}} \frac{\cos^2 \theta_{23}}{\cos^2 \theta_{12}} = 0.7_{-0.4}^{+1.1}.$$

- It's a mystery why their values are so similar
- Feature seems to require an unnatural level of fine-tuning an accident of Nature?

What if $\mathcal{I}^q_{\scriptscriptstyle TD} = \mathcal{I}^q_{\scriptscriptstyle PD}$?

• Can be shown that if $\mathcal{I}^q_{TD} = \mathcal{I}^q_{PD}$, then the spectrum of \mathcal{UD} is exactly geometric!

$$\mathcal{I}^q_{\scriptscriptstyle TD} = \mathcal{I}^q_{\scriptscriptstyle PD} \implies rac{\lambda_2}{\lambda_1} = rac{\lambda_3}{\lambda_2}$$

- ullet Data are thus consistent with spectrum of $\mathcal{U}\mathcal{D}$ being geometric at all scales
- Suggestive that some New Physics at a high scale requires a geometric spectrum for \mathcal{UD} .

Readily Generalised to the Leptons

For the leptons, in Dirac ν case, $\mathcal{I}^q_{TD} \to \mathcal{I}^\ell_{TD}$, and $\mathcal{I}^q_{PD} \to \mathcal{I}^\ell_{PD}$ with $\mathcal{U} \to \mathcal{N}$ and $\mathcal{D} \to \mathcal{L}$, $\gamma_u \to \gamma_\nu$ and $\gamma_d \to \gamma_\ell$.

Readily Generalised to the Leptons

For the leptons, in Dirac ν case, $\mathcal{I}^q_{TD} \to \mathcal{I}^\ell_{TD}$, and $\mathcal{I}^q_{PD} \to \mathcal{I}^\ell_{PD}$ with $\mathcal{U} \to \mathcal{N}$ and $\mathcal{D} \to \mathcal{L}$, $\gamma_u \to \gamma_\nu$ and $\gamma_d \to \gamma_\ell$.

Also find two evolution invariants linking quarks, leptons and gauge couplings:

$$\mathcal{I}_{\text{prod}}^{ql} \equiv \frac{\text{Det}(\mathcal{U}\mathcal{D})}{\text{Det}(\mathcal{N}\mathcal{L})} g_1^{-\frac{96}{41}} g_3^{-\frac{96}{7}}$$

$$\mathcal{I}_{\text{comm}}^{ql} \equiv \frac{\text{Det}^{3}[\mathcal{U}, \mathcal{D}] \text{Det}[\mathcal{N}, \mathcal{L}]}{\text{Det}^{3}(\mathcal{U}\mathcal{D}) \text{Det}^{\frac{5}{4}}(\mathcal{N}\mathcal{L})} g_{1}^{-\frac{81}{82}} g_{2}^{\frac{81}{38}}.$$

 Have derived for first time, exact one-loop RG invariants in the SM connecting masses and mixings

- Have derived for first time, exact one-loop RG invariants in the SM connecting masses and mixings
- ullet Product matrix $\mathcal{U}\mathcal{D}$ plays a special role in their formulation

Paul Harrison University of Warwick 23rd July 2010

- Have derived for first time, exact one-loop RG invariants in the SM connecting masses and mixings
- ullet Product matrix $\mathcal{U}\mathcal{D}$ plays a special role in their formulation
- Peculiar to the SM? have not been able to obtain similar results in MSSM or 2HDM

- Have derived for first time, exact one-loop RG invariants in the SM connecting masses and mixings
- ullet Product matrix $\mathcal{U}\mathcal{D}$ plays a special role in their formulation
- Peculiar to the SM? have not been able to obtain similar results in MSSM or 2HDM
- Why? Related to simplicty of SM a single Higgs and thus a single vev

- Have derived for first time, exact one-loop RG invariants in the SM connecting masses and mixings
- ullet Product matrix $\mathcal{U}\mathcal{D}$ plays a special role in their formulation
- Peculiar to the SM? have not been able to obtain similar results in MSSM or 2HDM
- Why? Related to simplicty of SM a single Higgs and thus a single vev
- Analogous results for the leptonic sector, plus two mixed Q/L invariants

- Have derived for first time, exact one-loop RG invariants in the SM connecting masses and mixings
- ullet Product matrix $\mathcal{U}\mathcal{D}$ plays a special role in their formulation
- Peculiar to the SM? have not been able to obtain similar results in MSSM or 2HDM
- Why? Related to simplicty of SM a single Higgs and thus a single vev
- Analogous results for the leptonic sector, plus two mixed Q/L invariants
- ullet The data are compatible with a geometric hierarchy in eigenvalues of $\mathcal{U}\mathcal{D}$ at all scales, suggestive of New Physics

- Have derived for first time, exact one-loop RG invariants in the SM connecting masses and mixings
- ullet Product matrix $\mathcal{U}\mathcal{D}$ plays a special role in their formulation
- Peculiar to the SM? have not been able to obtain similar results in MSSM or 2HDM
- Why? Related to simplicty of SM a single Higgs and thus a single vev
- Analogous results for the leptonic sector, plus two mixed Q/L invariants
- ullet The data are compatible with a geometric hierarchy in eigenvalues of $\mathcal{U}\mathcal{D}$ at all scales, suggestive of New Physics
- More details in arXiv/1007.3810 [hep-ph]

BACKUP SLIDES

Charge $\frac{2}{3}$ Quark Masses - Eigenvalues of \mathcal{U}

Given by its eigenvalue equation:

$$\lambda_i^3 - T_{\mathcal{U}} \cdot \lambda_i^2 + P_{\mathcal{U}} \cdot \lambda_i - D_{\mathcal{U}} = 0$$

where

$$T_{\mathcal{U}} = Tr(\mathcal{U}); \quad P_{\mathcal{U}} = \frac{1}{2}(Tr^2(\mathcal{U}) - Tr(\mathcal{U}^2)); \quad D_{\mathcal{U}} = Det(\mathcal{U})$$

But RGEs of the coefficients are complicated:

$$\frac{dT_{\mathcal{U}}}{dt} = 2\gamma_u T_{\mathcal{U}} + 3(T_{\mathcal{U}}^2 - 2P_{\mathcal{U}} - Tr(\mathcal{U}\mathcal{D}))$$

$$\frac{dP_{\mathcal{U}}}{dt} = 4\gamma_u P_{\mathcal{U}} + 3P_{\mathcal{U}}(T_{\mathcal{U}} - T_{\mathcal{D}}) + 3D_{\mathcal{U}}(Tr(\mathcal{U}^{-1}\mathcal{D}) - 3)$$

$$\frac{dD_{\mathcal{U}}}{dt} = 3D_{\mathcal{U}}(2\gamma_u + T_{\mathcal{U}} - T_{\mathcal{D}})$$

So, evolution of the eigenvalues of \mathcal{U} depends in a complicated way on the eigenvalues of \mathcal{U} , \mathcal{D} and on elements of V_{CKM} . Similar conclusion for e/values of \mathcal{D} .