Black Hole Throats and Large Quantum Fluctuations

Sheer El-Showk CEA Saclay

Based on work with J. de Boer, I. Messamah, and D. Van den Bleeken

ICHEP 2010

Puzzles from Black Hole Physics

- ▶ Field Theory reasoning fails to explain qualitative features of QG:
 - Information Loss
 - 2 Holography
 - Black hole entropy
- ▶ How does standard effective field theory (EFT) break-down in QG?

- ► Failure of locality (at horizon scales)?
- ► Large scale quantum effects?

Puzzles from Black Hole Physics

- ▶ Field Theory reasoning fails to explain qualitative features of QG:
 - Information Loss
 - 2 Holography
 - Black hole entropy
- ► How does standard effective field theory (EFT) break-down in QG?

- ► Failure of locality (at horizon scales)?
- ► Large scale quantum effects?

Puzzles from Black Hole Physics

- ▶ Field Theory reasoning fails to explain qualitative features of QG:
 - Information Loss
 - 4 Holography
 - Black hole entropy
- ▶ How does standard effective field theory (EFT) break-down in QG?

- ► Failure of locality (at horizon scales)?
- ► Large scale quantum effects?

Puzzles from Black Hole Physics

- ▶ Field Theory reasoning fails to explain qualitative features of QG:
 - Information Loss
 - 4 Holography
 - Black hole entropy
- ► How does standard effective field theory (EFT) break-down in QG?

- ► Failure of locality (at horizon scales)?
- ► Large scale quantum effects?

Puzzles from Black Hole Physics

- ▶ Field Theory reasoning fails to explain qualitative features of QG:
 - Information Loss
 - 4 Holography
 - Black hole entropy
- ▶ How does standard effective field theory (EFT) break-down in QG?

- ► Failure of locality (at horizon scales)?
- ► Large scale quantum effects?

Puzzles from Black Hole Physics

- ▶ Field Theory reasoning fails to explain qualitative features of QG:
 - Information Loss
 - 4 Holography
 - Black hole entropy
- ▶ How does standard effective field theory (EFT) break-down in QG?

- ► Failure of locality (at horizon scales)?
- ► Large scale quantum effects?

Puzzles from Black Hole Physics

- ▶ Field Theory reasoning fails to explain qualitative features of QG:
 - Information Loss
 - 4 Holography
 - Black hole entropy
- ▶ How does standard effective field theory (EFT) break-down in QG?

- ► Failure of locality (at horizon scales)?
- ► Large scale quantum effects?

Approach

Deep Throats in String Theory

- ▶ Study families of black hole *like* solutions in string theory.
- Soln's support throats of arbitrary depth mimicking horizons of SUSY BHs.
- ► Throats end in smooth cap and have no large curvature
 ⇒ EFT implies quantum corrections negligible.

Quantization

- ▶ Geometries are backreaction of system of D-branes.
- ▶ D-branes at weak coupling described by SUSY QM \Rightarrow tractable!
- ▶ Phase space at strong and weak coupling related by SUSY.
- ► After quantization throat destroyed by macroscopic quantum fluctuations!

Based Or

- ▶ A bound on the entropy of supergravity? [arXiv:0906.0011]
- Quantizing $\mathcal{N} = 2$ Multicenter Solutions. [arXiv:0807.4556]

Approach

Deep Throats in String Theory

- ▶ Study families of black hole *like* solutions in string theory.
- Soln's support throats of arbitrary depth mimicking horizons of SUSY BHs.
- ➤ Throats end in smooth cap and have no large curvature ⇒ EFT implies quantum corrections negligible.

Quantization

- ▶ Geometries are backreaction of system of D-branes.
- ▶ D-branes at weak coupling described by SUSY QM ⇒ tractable!
- ▶ Phase space at strong and weak coupling related by SUSY.
- ► After quantization throat destroyed by macroscopic quantum fluctuations!

Based Or

- ► A bound on the entropy of supergravity? [arXiv:0906.0011]
- Quantizing $\mathcal{N} = 2$ Multicenter Solutions. [arXiv:0807.4556]

uramination to

Approach

Deep Throats in String Theory

- ▶ Study families of black hole *like* solutions in string theory.
- Soln's support throats of arbitrary depth mimicking horizons of SUSY BHs.
- ► Throats end in smooth cap and have no large curvature
 ⇒ EFT implies quantum corrections negligible.

Quantization

- ▶ Geometries are backreaction of system of D-branes.
- ▶ D-branes at weak coupling described by SUSY QM \Rightarrow tractable!
- ▶ Phase space at strong and weak coupling related by SUSY.
- ► After quantization throat destroyed by macroscopic quantum fluctuations!

Based On

- ▶ A bound on the entropy of supergravity? [arXiv:0906.0011]
- Quantizing $\mathcal{N} = 2$ Multicenter Solutions. [arXiv:0807.4556]

D-branes

Setup

- ▶ Wrap branes on cycles of 6-d compactification manifold (Calabi-Yau).
- ▶ Branes sit at a points $\vec{x}_a \in \mathbb{R}^3$.
- ▶ "Integrate out" internal degrees of freedom.

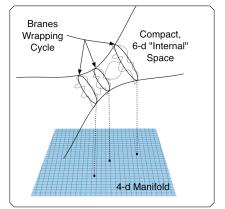


Figure: Positions \vec{x}_a minimize potential.

O-brane Theory (at weak-coupling)

- $ightharpoonup \mathcal{N}=4, d=1$ theory (SUSY QM).
- Coords become world-line fields, $\vec{x}_a(\tau)$, encoding brane dynamics.
- \triangleright Coupling, g_s , is free parameter from spacetime point of view.
- SUSY ground states: zeros of potential from brane interactions

D-branes

Setup

- ▶ Wrap branes on cycles of 6-d compactification manifold (Calabi-Yau).
- ▶ Branes sit at a points $\vec{x}_a \in \mathbb{R}^3$.
- ▶ "Integrate out" internal degrees of freedom.

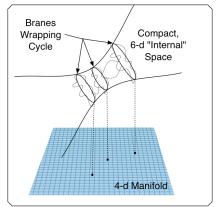


Figure: Positions \vec{x}_a minimize potential.

D-brane Theory (at weak-coupling)

- \triangleright $\mathcal{N} = 4$, d = 1 theory (SUSY QM).
- ► Coords become world-line fields, $\vec{x}_a(\tau)$, encoding brane dynamics.
- ▶ Coupling, g_s , is free parameter from spacetime point of view.
- ► SUSY ground states: zeros of potential from brane interactions.

- ▶ Branes have electron-monopole like interactions.
- ► First order part of Lagrangian fixed by SUSY

$$L^{(1)} = \sum_{a} (-U_a(x)D_a + \vec{A}_a(x) \cdot \dot{\vec{x}}_a) + \text{ fermions}$$

- $(x_a^i(\tau), D_a(\tau))$ are bosonic world-line fields.
- ▶ $U(x)_a$ and $A_a^i(x)$ functionals fixed by SUSY $\Rightarrow g_s$ independent.
- ▶ Protected terms fix SUSY phase space and symplectic form.

Commutators (from symplectic form)

$$[x_{ab}^i, x_{ab}^j] \sim \epsilon^{ijk} x_{ab}^k$$

Note: $\vec{x}_{ab} := \vec{x}_a - \vec{x}_b$ self-conjugate (consistent with electron-monopole interaction).

- ▶ Branes have electron-monopole like interactions.
- First order part of Lagrangian fixed by SUSY

$$L^{(1)} = \sum_a (-U_a(x)D_a + \vec{A}_a(x) \cdot \dot{\vec{x}}_a) + \text{ fermions}$$

- $(x_a^i(\tau), D_a(\tau))$ are bosonic world-line fields.
- ▶ $U(x)_a$ and $A_a^i(x)$ functionals fixed by SUSY $\Rightarrow g_s$ independent.
- ▶ Protected terms fix SUSY phase space and symplectic form.

Commutators (from symplectic form)

$$[x_{ab}^i, x_{ab}^j] \sim \epsilon^{ijk} x_{ab}^k$$

Note: $\vec{x}_{ab} := \vec{x}_a - \vec{x}_b$ self-conjugate (consistent with electron-monopole interaction).

- ▶ Branes have electron-monopole like interactions.
- First order part of Lagrangian fixed by SUSY

$$L^{(1)} = \sum_a (-U_a(x)D_a + \vec{A}_a(x) \cdot \dot{\vec{x}}_a) + \text{ fermions}$$

- $(x_a^i(\tau), D_a(\tau))$ are bosonic world-line fields.
- ▶ $U(x)_a$ and $A_a^i(x)$ functionals fixed by SUSY $\Rightarrow g_s$ independent.
- ▶ Protected terms fix SUSY phase space and symplectic form.

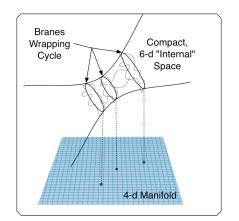
Commutators (from symplectic form)

$$[x_{ab}^i, x_{ab}^j] \sim \epsilon^{ijk} x_{ab}^k$$

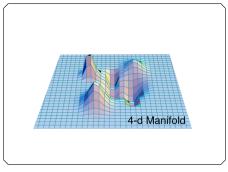
Note: $\vec{x}_{ab} := \vec{x}_a - \vec{x}_b$ self-conjugate (consistent with electron-monopole interaction).

Pictures

- ightharpoonup As g_s tuned up D-branes couple to gravity and backreact.
- ▶ At strong coupling supergravity is a better effective description than SQM.



At $g_s \sim 0$ brane lives on $\mathbb{R}^{1,3}$.



For $g_s \gg 1$ branes warp spacetime \Rightarrow generate geometry.

Solutions

- ▶ Branes backreact giving SUSY solutions to 4d, $\mathcal{N} = 2$ sugra.
- ▶ Also lift to soln of 5d, $\mathcal{N} = 1$ sugra (but will not discuss).

4-d fields

$$ds^{2} = -\frac{1}{\Sigma(x)}(dt + \omega(x))^{2} + \Sigma(x) dx^{i} dx^{i},$$

$$t^{A} = B^{A} + i J^{A}, \qquad \mathcal{A}^{A} = \dots$$

▶ Original brane coords \vec{x}_a parameterize soln's via dependence of $\Sigma(x)$ and $\omega(x)$ on H(x).

Solutions specified in terms of:

$$H(x) = \sum_{a=1}^{N} \frac{\Gamma_a}{|x - x_a|} + h$$

Solutions

- ▶ Branes backreact giving SUSY solutions to 4d, $\mathcal{N} = 2$ sugra.
- ▶ Also lift to soln of 5d, $\mathcal{N} = 1$ sugra (but will not discuss).

4-d fields

$$ds^{2} = -\frac{1}{\Sigma(x)}(dt + \omega(x))^{2} + \Sigma(x) dx^{i} dx^{i},$$

$$t^{A} = B^{A} + iJ^{A}, \qquad A^{A} = \dots$$

• Original brane coords \vec{x}_a parameterize soln's via dependence of $\Sigma(x)$ and $\omega(x)$ on H(x).

Solutions specified in terms of:

$$H(x) = \sum_{a=1}^{N} \frac{\Gamma_a}{|x - x_a|} + h$$

Solutions

- ▶ Branes backreact giving SUSY solutions to 4d, $\mathcal{N} = 2$ sugra.
- ▶ Also lift to soln of 5d, $\mathcal{N} = 1$ sugra (but will not discuss).

4-d fields

$$ds^{2} = -\frac{1}{\Sigma(x)}(dt + \omega(x))^{2} + \Sigma(x) dx^{i} dx^{i},$$

$$t^{A} = B^{A} + i J^{A}, \qquad \mathcal{A}^{A} = \dots$$

• Original brane coords \vec{x}_a parameterize soln's via dependence of $\Sigma(x)$ and $\omega(x)$ on H(x).

Solutions specified in terms of:

$$H(x) = \sum_{a=1}^{N} \frac{\Gamma_a}{|x - x_a|} + h$$

Angular Momentum of Solutions

- $\blacktriangleright \omega(x)$ in metric implies solutions are stationary but *not static*.
- ▶ Angular momentum carried between *each pair* of centers \vec{J}_{ab} .

Intrinsic Angular Momentum

$$\vec{J} = \sum_{a < b} \vec{J}_{ab} = \frac{1}{2} \sum_{a < b} \frac{\left\langle \Gamma_a, \Gamma_b \right\rangle \vec{x}_{ab}}{r_{ab}} \,.$$

- Asymptotic value of $\omega(x)$.
- ▶ $\langle \Gamma_a, \Gamma_b \rangle$ electric-magnetic pairing \Rightarrow crossed EM fields.
- ▶ Brane commutator $[x_{ab}^i, x_{ab}^j] \sim \epsilon^{ijk} x_{ab}^k$ corresponds to quantizing \vec{J}_{ab} .

Angular Momentum of Solutions

- $\blacktriangleright \omega(x)$ in metric implies solutions are stationary but *not static*.
- ▶ Angular momentum carried between *each pair* of centers \vec{J}_{ab} .

Intrinsic Angular Momentum

$$\vec{J} = \sum_{a < b} \vec{J}_{ab} = \frac{1}{2} \sum_{a < b} \frac{\left\langle \Gamma_a, \Gamma_b \right\rangle \vec{x}_{ab}}{r_{ab}} \; .$$

- Asymptotic value of $\omega(x)$.
- ▶ $\langle \Gamma_a, \Gamma_b \rangle$ electric-magnetic pairing \Rightarrow crossed EM fields.
- ▶ Brane commutator $[x_{ab}^i, x_{ab}^j] \sim \epsilon^{ijk} x_{ab}^k$ corresponds to quantizing \vec{J}_{ab} .

Angular Momentum of Solutions

- $\blacktriangleright \omega(x)$ in metric implies solutions are stationary but *not static*.
- ▶ Angular momentum carried between *each pair* of centers \vec{J}_{ab} .

Intrinsic Angular Momentum

$$\vec{J} = \sum_{a < b} \vec{J}_{ab} = \frac{1}{2} \sum_{a < b} \frac{\left\langle \Gamma_a, \Gamma_b \right\rangle \vec{x}_{ab}}{r_{ab}} \; .$$

- Asymptotic value of $\omega(x)$.
- ▶ $\langle \Gamma_a, \Gamma_b \rangle$ electric-magnetic pairing \Rightarrow crossed EM fields.
- ▶ Brane commutator $[x_{ab}^i, x_{ab}^j] \sim \epsilon^{ijk} x_{ab}^k$ corresponds to quantizing \vec{J}_{ab} .

SUSY Phase Space

BPS Constraint Equations

 $r_{ab} = |\vec{x}_a - \vec{x}_b|$ must satisfy:

$$\sum_{a,a\neq b} \frac{\langle \Gamma_a, \Gamma_b \rangle}{r_{ab}} = \langle h, \Gamma_a \rangle$$

- ▶ Constraint eqns minimize potential from gravity and scalars.
- ▶ For *N* centers solution space to above 2N 2 dim.
- ▶ Dimension even \Rightarrow good because sol space is phase space!
- ▶ This is because $\{\vec{x}_a\}$ parameterizing soln's are self-conjugate.

Weak-Strong Equivalence

Constraint eqns exactly match min of brane $(g_s \sim 0)$ potential!

SUSY Phase Space

BPS Constraint Equations

 $r_{ab} = |\vec{x}_a - \vec{x}_b|$ must satisfy:

$$\sum_{a,a\neq b} \frac{\langle \Gamma_a, \Gamma_b \rangle}{r_{ab}} = \langle h, \Gamma_a \rangle$$

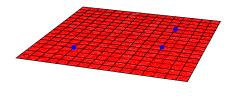
- ▶ Constraint eqns minimize potential from gravity and scalars.
- ▶ For *N* centers solution space to above 2N 2 dim.
- ▶ Dimension even \Rightarrow good because sol space is phase space!
- ▶ This is because $\{\vec{x}_a\}$ parameterizing soln's are self-conjugate.

Weak-Strong Equivalence

Constraint eqns exactly match min of brane $(g_s \sim 0)$ potential!

Special Family of Solutions

Consider a family of solutions parameterized by λ such that $x_{ab} \sim \lambda$.



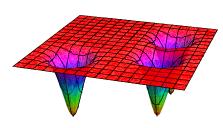


Figure: D-brane QM Regime ($g_s \sim 0$)

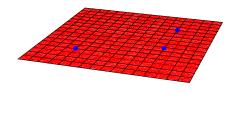
- ▶ Brane wavefn's have little overlap.
- ► Approximately semi-classical.

Figure: Supergravity Regime $(g_s \gg 1)$

► Smooth multicentered sugra solution.

Special Family of Solutions

Consider a family of solutions parameterized by λ such that $x_{ab} \sim \lambda$.



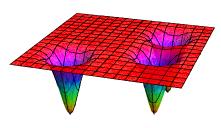


Figure: D-brane QM Regime ($g_s \sim 0$)

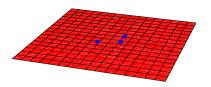
- ▶ Brane wavefn's have little overlap.
- ► Approximately semi-classical.

Figure: Supergravity Regime $(g_s \gg 1)$

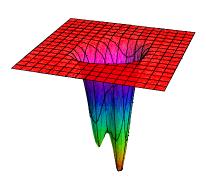
► Smooth multicentered sugra solution.

$\lambda \ll 1$

As $\lambda \to 0$ centers meld to long but smooth throat ending in a cap.



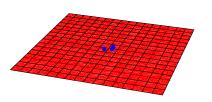
- Centers very close together.
- Less phase space with $|\vec{x}_{ab}| \sim \lambda$.
- Non-commutative nature of coords becomes relevant.



- ▶ Throat depth scales inversely to λ .
- ▶ Solutions smooth for all $x_{ab} > 0$.

$\lambda \sim 0$

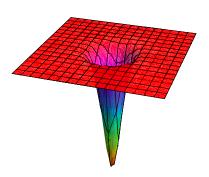
In this regime throat depth very λ -sensitive.



- Outside semi-classical regime.
- \sim 1 unit of phase space in this region.
- Quantum fluctuations large.

$$\langle x_{ab} \rangle \sim \mathcal{O}(\hbar), \qquad |\delta \vec{x}_{ab}| \sim |\vec{x}_{ab}|$$

$$|\delta \vec{x}_{ab}| \sim |\vec{x}_{ab}|$$



- ▶ Metric scale $g_{ij}(x) \sim \lambda^{-2}$ as $x_{ab} \sim \lambda$.
- Geodesic distance between centers remains finite and large.

Large Quantum Fluctuations

$\lambda \sim 0$ at weak-coupling $(g_s \sim 0)$

▶ Brane system very quantum when $\lambda \sim 0$ because

$$[x^i, x^j] \sim \epsilon^{ijk} x^k$$

- ▶ Define λ_{crit} such that $|x_{ab}| < \lambda_{\text{crit}}$ occupies less than one unit of phase space.
- ▶ States localized near $x_{ab} \sim \lambda_{crit}$ cannot be semi-classical:

$$\sigma_x \sim \sqrt{\langle x_{ab}^2 \rangle - \langle x_{ab} \rangle^2} \sim \langle x_{ab}^i \rangle$$

$\lambda \sim 0$ at strong coupling $(g_s \gg 1)$

- ▶ Throat depth very sensitive to x_{ab} .
- ► As $x_{ab} \rightarrow 0$ throat deeper but geometry stays smooth.
- ▶ Geometries corresponding to $x_{ab} < \lambda_{crit}$ necessarily quantum!!

Large Quantum Fluctuations

$\lambda \sim 0$ at weak-coupling $(g_s \sim 0)$

▶ Brane system very quantum when $\lambda \sim 0$ because

$$[x^i, x^j] \sim \epsilon^{ijk} x^k$$

- ▶ Define λ_{crit} such that $|x_{ab}| < \lambda_{\text{crit}}$ occupies less than one unit of phase space.
- ▶ States localized near $x_{ab} \sim \lambda_{crit}$ cannot be semi-classical:

$$\sigma_x \sim \sqrt{\langle x_{ab}^2 \rangle - \langle x_{ab} \rangle^2} \sim \langle x_{ab}^i \rangle$$

$\lambda \sim 0$ at strong coupling $(g_s \gg 1)$

- ▶ Throat depth very sensitive to x_{ab} .
- ► As $x_{ab} \rightarrow 0$ throat deeper but geometry stays smooth.
- ▶ Geometries corresponding to $x_{ab} < \lambda_{crit}$ necessarily quantum!!

Phase Space

Phase Space Density

Solutions corresponding to $\lambda \sim 0$ occupy very little phase space volume.

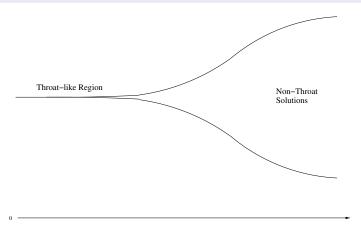


Figure: Phase space as a function of λ (schematically).

Main Result:

Plank size cells in phase space contain soln's that differ on macroscopic scales!

What have we learned?

- ► Supersymmetric non-renormalization implies phase space volume fixed even if spacetime volume increases.
- Black hole like throats can look quantum near horizon (where spacetime is smooth).
- Supersymmetry gives us control and intuition but result is not totally unexpected and should be more general.

- Consistent with Holography: phase space in QG scales with area not volume.
- ▶ This is the kind of effect that *might* help resolve information loss.

Main Result:

Plank size cells in phase space contain soln's that differ on macroscopic scales!

What have we learned?

- ► Supersymmetric non-renormalization implies phase space volume fixed even if spacetime volume increases.
- Black hole like throats can look quantum near horizon (where spacetime is smooth).
- Supersymmetry gives us control and intuition but result is not totally unexpected and should be more general.

- Consistent with Holography: phase space in QG scales with area not volume.
- ▶ This is the kind of effect that *might* help resolve information loss.

Main Result:

Plank size cells in phase space contain soln's that differ on macroscopic scales!

What have we learned?

- Supersymmetric non-renormalization implies phase space volume fixed even if spacetime volume increases.
- ▶ Black hole like throats can look quantum near horizon (where spacetime is smooth).
- Supersymmetry gives us control and intuition but result is not totally unexpected and should be more general.

- Consistent with Holography: phase space in QG scales with area not volume.
- ▶ This is the kind of effect that *might* help resolve information loss.

Main Result:

Plank size cells in phase space contain soln's that differ on macroscopic scales!

What have we learned?

- ► Supersymmetric non-renormalization implies phase space volume fixed even if spacetime volume increases.
- ▶ Black hole like throats can look quantum near horizon (where spacetime is smooth).
- Supersymmetry gives us control and intuition but result is not totally unexpected and should be more general.

- Consistent with Holography: phase space in QG scales with area not volume.
- ▶ This is the kind of effect that *might* help resolve information loss.

Main Result:

Plank size cells in phase space contain soln's that differ on macroscopic scales!

What have we learned?

- Supersymmetric non-renormalization implies phase space volume fixed even if spacetime volume increases.
- ▶ Black hole like throats can look quantum near horizon (where spacetime is smooth).
- Supersymmetry gives us control and intuition but result is not totally unexpected and should be more general.

- Consistent with Holography: phase space in QG scales with area not volume.
- ▶ This is the kind of effect that *might* help resolve information loss.

