Measurement of W and Z production at $\sqrt{s} = 7$ TeV with the ATLAS Detector

L. Serin (LAL Orsay/CNRS & CERN)

on behalf of the ATLAS collaboration

Motivation pp → WX, ZX Lev, μν Lee, μμ

- Commissioning and performance issues
 - First sample of isolated high p_T leptons : identification, calibration, energy/momentum scales + efficiency with Tag and Probe
 - Study of missing **₹**_T
- Long term physics issues
 - Z and W cross section measurement: test of QCD with higher order correction and parton density functions in a new energy regime (7 TeV)

$$\sigma^{NNLO}_{W \to \ell \nu} = 10.46 \; \text{nb} \; \; (\sigma^{NNLO}_{W^+ \to \ell^+ \nu} = 6.16 \; \text{nb} \; \; \text{and} \; \; \sigma^{NNLO}_{W^- \to \ell^- \nu} = 4.30 \; \text{nb}) \; \; \text{and} \; \; \sigma^{NNLO}_{Z/\gamma^* \to \ell \ell} = 0.99 \; \text{nb}.$$

computed with FEWZ and MSTW2008, ~4 % theoretical uncertainty Additional measurements on W+/W- cross section and charge asymmetry as a function of pseudorapidity to constraint pdf

- Important background for several new physics searches (di-lepton, lepton + E_{τ} ...)

Data sample

ATLAS Recorded: 338 nb⁻¹ (@94.8 %)

Require detectors in nominal conditions + event cleaning

For W cross section : 16.9 (16.7) nb^{-1} for e^{\pm} (μ^{\pm}) channel

For Z cross section : 219 (229) nb^{-1} for e^{\pm} (μ^{\pm}) channel

And some recent updated plots with all the integrated luminosity

Uncertainty on absolute luminosity from van der Meer scan: 11 % (See talk by M Ferro-Luzzi in LHC session)

MC samples

W & Z signals: Pythia 6.4 with MRST LO* through Geant 4
Cross section corrected to NNLO cross section
(FEWZ + MSTW2008)

Backgrounds to W analysis:

	Physics process	Cross section (nb) [\times BR]	Luminosity (nb ⁻¹)
	$W \rightarrow \tau \nu$ (electron channel analysis)	10.46	1.9×10^{5}
	$W \rightarrow \tau \nu \rightarrow \mu \nu \nu$	3.68	3.1×10^5
Eako E/	$Z \rightarrow ee \ (m_{\ell\ell} > 60 \ \mathrm{GeV})$	0.99	4.8×10^{6}
Fake E _T -	$Z \rightarrow \mu\mu \ (m_{\ell\ell} > 60 \text{ GeV})$	0.99	5.1×10^6
	$Z \rightarrow \tau \tau \ (m_{\ell\ell} > 60 \text{ GeV})$	0.99	2.0×10^{6}
e/µ channel ←	$t\overline{t}$	0.16	2.5×10^6
	Dijet (electron channel, $\hat{p}_T > 15 \text{ GeV}$)	1.15×10^6	100
Falsa landan I	Dijet (muon channel, $8 < \hat{p}_T < 17 \text{ GeV}$)	9.86×10^{6}	0.05
Fake lepton +	Dijet (muon channel, $17 < \hat{p}_T < 35 \text{ GeV}$)	6.78×10^5	0.74
b→leptons	Dijet (muon channel, $35 < \hat{p}_T < 70 \text{ GeV}$)	4.10×10^4	12.20
data driven	Dijet (muon channel, $70 < \hat{p}_T < 140 \text{ GeV}$)	2.20×10^{3}	227.74
methods	Dijet (muon channel, $140 < \hat{p}_T < 280 \text{ GeV}$)	0.88×10^{2}	5.70×10^{3}
	Dijet (muon channel, $280 < \hat{p}_T < 1120 \text{ GeV}$)	2.35	2.13×10^5

Event reconstruction

See ATLAS talks in LHC session for detector status and performance

 e^{\pm}

Sliding window cluster (with 2.5 GeV E_T seed) matched to track. Identification relies mostly on track quality, transverse profile in EM calorimeter and transition radiation signal:

10⁵ rejection against jet with pt > 20 GeV for 72 % efficiency for e[±] for tight (7.10³ & 90 % for medium)

$$E_{x,y}^{Electron,miss} = E_{x,y}^{Calo,miss} = -\sum_{i} E_{x,y}.$$

Using calibrated 3-dimensional topological cluster (hadron/e \pm / γ , dead material energy loss...)

Stand alone

Spectrometer only + trigger chamber

extrapolated to IP

Combined

Association with ID track Combination of parameters

Reconstruction and identification > 94 % for pT > 10 GeV

$$E_{x,y}^{Muon,miss} = -\left(\sum_{Muons} E_{x,y} + \sum_{i} E_{x,y}\right)$$

Energy deposited in calorimeter by μ removed from calorimeter contribution.

Pre-selection (17 nb⁻¹)

 e^{\pm} $|\eta|$ < 2.47 + cracks L1 calo trigger (5 GeV)

Loose electron with P_T> 20 GeV (jet rejection of 1100)

5.1 10³ candidates

QCD over estimated by 2.6 with MC

μ^{\pm} : $|\eta| < 2.4$

L1 muon trigger well measured combined muon with $P_T > 15$ GeV $(\Delta p_T < 15$ GeV, $\Delta z < 1$ cm)

1155 candidates

QCD over estimated by 1.7 with MC

22/07/10

Tight selection (17 nb⁻¹)

Electrons

Tight electron $E_T > 25 \text{ GeV}$ $m_T > 40 \text{ GeV}$ $\Rightarrow 46 \text{ candidates}$

Muons

Signal kinematics distributions (17 nb⁻¹)

Background (17 nb⁻¹)

e

μ±

QCD background estimated on data using calorimeter isolation variable extrapolated from loose → tight e[±]

QCD loose: 40.6±8

Rejection: 38+15

 N_{OCD} (tight) = 1.1 ±0.2(stat)±0.4(syst)

EW background : W $\rightarrow \tau \nu$ (1.4)

+ Z→ee : 0.1

 $N_{FW} = 1.5 \pm 0.0 (stat) \pm 0.1 (syst) \pm 0.1 (lumi)$

QCD background estimated on data using with ABCD method in track isolation-万 plane

No transverse mass cut applied

 N_{QCD} (tight) = 0.9 ±0.3(stat)±0.6(syst)

EW background : Mainly $Z \rightarrow \mu\mu$ (2.2) and $W \rightarrow \tau \nu$ (1.9)

N_{EW}=4.4±0.0(stat)±0.3(syst)± 0.5(lumi) Cosmic ray negligible

Cross section measurement

$$\sigma_W \times BR(W \to \ell \nu) = \frac{N_W^{sig}}{A_W C_W L_{int}},$$

N^{sig} background subtracted signal events. L_{int} integrated luminosity

A_W: Geometrical and kinematics acceptance from MC (computed at born level). Limited by knowledge of proton pdf and W production at LHC:

MC	A_W	A_W	A_W	A_W	A_W	A_W
	$W^+ \rightarrow e^+ v$	$W^+ \rightarrow \mu^+ \nu$	$W^- \rightarrow e^- \nu$	$W^- \rightarrow \mu^- \nu$	$W \rightarrow e \nu$	$W \rightarrow \mu \nu$
PYTHIA MRSTLO*	0.466	0.484	0.457	0.475	0.462	0.480
MC@NLO HERAPDF1.0	0.475	0.494	0.454	0.472	0.465	0.483
MC@NLO CTEQ6.6	0.478	0.496	0.452	0.470	0.465	0.483

With CTEQ6.6 PDF error eigenvectors, 1 % (1.8%) uncertainty on W⁺ (W⁻) Pythia/MC@NLO: up to 2.6 % difference in positron channel

→use 3% conservative systematic uncertainty from generators

Correction factors C_w and systematics

 C_W : includes triggering, reconstruction and identification efficiency + some selection cuts within acceptance. To be measured on data with Z.

Electrons	syst on C _W
Trigger efficiency: (ε>99.9 %) Identification: (ε= 78 %) discrepancy data/MC material effect	<0.5 % 6 % 4 %
EM energy scale ⊭ _⊤ scale & resolution	3 % 2 % 8 %
C _W = (65.6±5.3) %	

measured	on data with	_
	Muons	syst on C _W
Trigger : (ε=88 %) Identificat		4 %
(ε= 97 %)		4 %
μ p _τ scale	e & resolution & resolution	า 4%
É _⊤ scale 8	& resolution	2 %
		7 %
C_{M}	,= (81.4±5.6) %

W cross section (17 nb⁻¹)

$$\sigma(W \rightarrow e^{\pm}v) = 8.5 \pm 1.3 \text{ (stat)} \pm 0.7 \text{(syst)} \pm 0.9 \text{(lumi)} \text{ nb}$$

Theory : 10.46 ± 0.42
 $\sigma(W \rightarrow \mu^{\pm}v) = 10.3 \pm 1.3 \text{ (stat)} \pm 0.8 \text{(syst)} \pm 1.1 \text{(lumi)} \text{ nb}$

Charge asymmetry

$$A = \frac{N_{\ell^+} - N_{\ell^-}}{N_{\ell^+} + N_{\ell^-}}$$

Expected to be different from zero and increasing with η Sensitive to valence quark distribution

Sensitive to valence quark distribution Will provide important information about pdf

W candidates with ~300 nb⁻¹

Higher instantaneous luminosity→ different condition with pile-up!

- about 40 % of the events with more than one vertex
- need to use higher E_⊤ trigger

815 electron candidates

1111 muon candidates

In agreement with expectation from cross section measurement Total cross section no more statistically dominated, should focus work on systematic using Z

Z selection and candidates (~225 nb⁻¹)

electron channel, 219 nb⁻¹

Preselection + two candidates of opposite charge with $p_T > 20 \text{ GeV}$ Medium identification (R(jet)=6800)

muon channel 229 nb⁻¹

Preselection + two candidates of opposite charge with $p_T > 20$ GeV + Track isolation

Z→ee : 46 candidates (66-116 GeV)

 $Z\rightarrow \mu\mu$:79 candidates (66-116 GeV)

Z cross section with ~225 nb⁻¹

electron channel 219 nb⁻¹

muon channel 229 nb⁻¹

Background: 0.49±0.07±0.05

QCD: 0.31

EW : 0.18 (W \rightarrow ev, $t\bar{t}$, $Z\rightarrow\tau\tau$)

Background: 0.17±0.01±0.01

QCD: 0.02

EW : 0.15 ($Z\rightarrow \tau\tau$, $t\bar{t}$, $b\bar{b}$...)

Similar procedure as used for W for cross section

Correction factor $C_7 = 64.5 \%$

14% Correction factor $C_7 = 79.7\%$ 7 %

Acceptance $A_7 = 44.6 \%$ 3 %

Acceptance $A_7 = 48.6 \%$

3 %

Total cross section

 $\sigma(Z \rightarrow e^+ e^-) = 0.72 \pm 0.11 \text{ (stat)} \pm 0.10 \text{ (syst)} \pm 0.08 \text{ (lumi)} \text{ nb}$

Theory : 0.96± 0.04 for [66-116] GeV mass window

 $\sigma(Z \rightarrow \mu^+ \mu^-) = 0.89 \pm 0.10 \text{ (stat)} \pm 0.07 \text{ (syst)} \pm 0.10 \text{ (lumi)} \text{ nb}$

Z candidates with ~300 nb⁻¹

56 electron candidates

106 muon candidates

Conclusion

- LHC and ATLAS fully operational to start physics!
- 815 (1111) W candidates measured by ATLAS in electron (muon) channel
 - → First measurement of cross section & charge asymmetry at 7 TeV with 17 nb⁻¹, in agreement with expectation based on NNLO QCD prediction
 - → With full recorded luminosity, no more statistically dominated
- 56 (106) Z candidates measured by ATLAS in electron (muon) channel
 - → Cross section measured with 225 nb⁻¹ in agreement with expectation at NNLO QCD
 - → More Z will be helpful to reduce systematic on cross section (trigger/reconstruction/ identification efficiency from Tag & Probe method)
- Also ready for W→τ v ...

More results...

W candidates with ~300 nb⁻¹

After tight selection cuts:

Combined cross section with ~17 nb⁻¹

Z cross section with ~225 nb⁻¹

Mass window 66-116 GeV

Z mass parameters (~225 nb⁻¹)

Data		MC	
Electron	89.6±0.8 (stat) σ=3.6±0.8(stat)	91.6 and 1.7	
Muons	90.5 \pm 0.8 (stat) σ =4.2 \pm 0.8(stat)	92.1 and 1.8	

```
Scale in agreement within 2% (stat errors only) Width larger in data (calibration, alignment,.....)
```