Study light scalar mesons from heavy quark decays

Cai－Dian Lü（呂才典） IHEP，Beijing

Wei Wang，CDLu，arXiv：0910．0613［hep－ph］

Outline

- Scalar meson study status
- Four quark states or two-quark states: semileptonic decays
- Non-leptonic decays
- Summary

Scalar Mesons (${ }^{\mathrm{P}}=\mathbf{O O}^{+}$)

Scalar Mesons around $\mathbf{1 G e V}\left(\mathbf{J}^{\mathrm{P}}=\mathbf{0}^{+}\right)$

σ exist or not for many years
Mass too light to be $q q$
Because 0^{++}states are $\mathbf{S}=\mathbf{1}, \mathbf{L}=1$, should be heavier than $\mathbf{1}^{--}\left(\rho, \phi \mathbf{K}^{*}\right)$

the neutral scalar meson 0^{++}has the same quantum number with vacuum

- They can mix with vacuum, glueball, even molecular states
- So a lot of explanations on the markettetra quark states
- Most study focus on the decay property of the scalar mesons
- The production of scalar mesons from heavy quark decays are more interesting

Feynman diagrams of semileptonic decays of D to Scalar Mesons

$\mathrm{D}^{+} \rightarrow \mathrm{f}_{0} \pi^{+}, \mathrm{D}^{+} \rightarrow \sigma \pi^{+}$have been measured

Isospin relation

$$
\mathcal{B}\left(D^{+} \rightarrow a_{0}^{0} l^{+} \nu\right)=\mathcal{B}\left(D^{+} \rightarrow \sigma l^{+} \nu\right)
$$

- Isospin 0 and isospin 1 contribution should be 1:1, derived from the Clebsch-Gordan coefficients
- Isospin conserved by strong interaction, no matter perturbative or non-perturbative --model independent
similarly, $B^{+} / D^{+} \rightarrow \rho^{0} e^{+} v_{e}=B^{+} / D^{+} \rightarrow \omega_{e}{ }^{+} v_{e}$ already verified by exp.

2-quark picture of ordinary light Scalar Mesons

$$
\begin{align*}
& |\sigma\rangle=\frac{1}{\sqrt{2}}(|\bar{u} u\rangle+|\bar{d} d\rangle) \equiv|\bar{n} n\rangle, \quad\left|f_{0}\right\rangle=|\bar{s} s\rangle, \\
& \left|a_{0}^{0}\right\rangle=\frac{1}{\sqrt{2}}(|\bar{u} u\rangle-|\bar{d} d\rangle), \quad\left|a_{0}^{-}\right\rangle=|\bar{u} d\rangle, \quad\left|a_{0}^{+}\right\rangle=|\bar{d} u\rangle
\end{align*}
$$

$\sigma-\mathbf{f}_{0}$ mixing:
$\left|\begin{array}{l}f_{0} \\ \sigma\end{array}\right\rangle=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\left|\begin{array}{l}- \\ s s \\ n n\end{array}\right\rangle$
with

$$
25^{\circ}<\theta<40^{\circ}, \quad 140^{\circ}<\theta<165^{\circ}
$$

2-quark picture of ordinary light Scalar Mesons

$$
|\sigma\rangle=\frac{1}{\sqrt{2}}(|\bar{u} u\rangle+|\bar{d} d\rangle) \equiv|\bar{n} n\rangle, \quad\left|f_{0}\right\rangle=|\bar{s} s\rangle,
$$

$\sigma-\mathbf{f}_{0}$ mixing:
$\left|\begin{array}{c}f_{0} \\ \sigma\end{array}\right\rangle=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\left|\begin{array}{l}-\overline{s s} \\ - \\ n n\end{array}\right\rangle$
with

$$
\left|a_{0}^{0}\right\rangle=\frac{1}{\sqrt{2}}(|\bar{u} u\rangle-|\bar{d} d\rangle), \quad\left|a_{0}^{-}\right\rangle=
$$

$$
25^{\circ}<\theta<40^{\circ}, \quad 140^{\circ}<\theta<165^{\circ}
$$

Sum rule independent of mixing

only $d \bar{d}$ component contributes, in isospin symmetry, we have

$$
\begin{aligned}
\mathcal{A}\left(D^{+} \rightarrow f_{0} l^{+} \nu\right) & =-\sin \theta \hat{\mathcal{A}}, \\
\mathcal{A}\left(D^{+} \rightarrow \sigma l^{+} \nu\right) & =-\cos \theta \hat{\mathcal{A}}
\end{aligned}
$$

where

$$
\hat{\mathcal{A}} \equiv \mathcal{A}\left(D^{+} \rightarrow a_{0}^{0} l^{+} \nu\right)
$$

Br $\sim|\S|^{2}, \quad$ We can get sum rule as
$\mathcal{B}\left(D^{+} \rightarrow a_{0}^{0} l^{+} \nu\right)=\mathcal{B}\left(D^{+} \rightarrow f_{0} l^{+} \nu\right)+\mathcal{B}\left(D^{+} \rightarrow \sigma l^{+} \nu\right)$

4-quark picture of ordinary light Scalar Mesons

Group theory
$|\sigma\rangle=\bar{u} u \bar{d} d, \quad\left|f_{0}\right\rangle=|\bar{n} n \bar{s} s\rangle$,
assignment
$\left.a_{0}^{0}\right\rangle=\frac{1}{\sqrt{2}}(\bar{u} u-\bar{d} d) \bar{s} s, \quad\left|a_{0}^{+}\right\rangle=|\bar{d} u \bar{s} s\rangle, \quad\left|a_{0}^{-}\right\rangle=|\bar{u} d \bar{s} s\rangle$
$\sigma-f_{0}$ mixing:

$$
\left|\begin{array}{l}
f_{0} \\
\sigma
\end{array}\right\rangle=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)\left|\begin{array}{c}
-\overline{-} \\
\bar{n} s s \\
-\bar{u} \bar{d} d
\end{array}\right\rangle
$$

with

$$
\phi=\left(174.6_{-3.2}^{+3.4}\right)^{\circ}
$$

$$
n \bar{n}=\frac{u \bar{u}+d \bar{d}}{\sqrt{2}}
$$

4-quark picture of ordinary light Scalar Mesons

Group theory
$|\sigma\rangle=\bar{u} u \bar{d} d, \quad\left|f_{0}\right\rangle=|\bar{n} n \bar{s} s\rangle$,
assignment
$\left.a_{0}^{0}\right\rangle=\frac{1}{\sqrt{2}}(\bar{u} u-\bar{d} d) \bar{s} s, \quad\left|a_{0}^{+}\right\rangle=|\bar{d} u \bar{s} s\rangle$
$\sigma-f_{0}$ mixing:

$$
\left|\begin{array}{l}
f_{0} \\
\sigma
\end{array}\right\rangle=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)\left|\begin{array}{c}
-\overline{-} \\
\bar{n} \bar{s} s \\
\bar{u} \bar{d} d d
\end{array}\right\rangle
$$

with

$$
\phi=\left(174.6_{-3.2}^{+3.4}\right)^{\circ}
$$

$$
n \bar{n}=\frac{u \bar{u}+d \bar{d}}{\sqrt{2}}
$$

4-quark picture of Scalar Mesons

$$
\begin{aligned}
\mathcal{A}\left(D^{+} \rightarrow f_{0} l^{+} \nu\right) & =-(\cos \phi+\sqrt{2} \sin \phi) \hat{\mathcal{A}} \\
\mathcal{A}\left(D^{+} \rightarrow \sigma l^{+} \nu\right) & =(\sin \phi-\sqrt{2} \cos \phi) \hat{\mathcal{A}},
\end{aligned}
$$

where

$$
\hat{\mathcal{A}} \equiv \mathcal{A}\left(D^{+} \rightarrow a_{0}^{0} l^{+} \nu\right)
$$

We can get sum rule as

$\mathcal{B}\left(D^{+} \rightarrow a_{0}^{0} l^{+} \nu\right)=\frac{1}{3}\left[\mathcal{B}\left(D^{+} \rightarrow f_{0} l^{+} \nu\right)+\mathcal{B}\left(D^{+} \rightarrow \sigma l^{+} \nu\right)\right]$

Define a ratio \mathbf{R}

$$
R=\frac{\mathcal{B}\left(D^{+} \rightarrow f_{0} l^{+} \nu\right)+\mathcal{B}\left(D^{+} \rightarrow \sigma l^{+} \nu\right)}{\mathcal{B}\left(D^{+} \rightarrow a_{0}^{0} l^{+} \nu\right)}
$$

It is one for 2-quark picture, while $\mathbf{3}$ for 4 -quark picture
Similarly, for B meson decays, we have

$$
\begin{aligned}
R & =\frac{\mathcal{B}\left(B^{+} \rightarrow f_{0} l^{+} \nu\right)+\mathcal{B}\left(B^{+} \rightarrow \sigma l^{+} \nu\right)}{\mathcal{B}\left(B^{+} \rightarrow a_{0}^{0} l^{+} \nu\right)} \\
& =\left\{\begin{array}{l}
1 \text { two quark } \\
3 \text { tetra-quark }
\end{array}\right.
\end{aligned}
$$

These channels have large enough BRs to be measurable

If the mixing angle is modest, all three $D^{+} \rightarrow S l^{+} \nu$ have similar branching ratios. The branching ratio of the semileptonic $D_{s} \rightarrow f_{0}$ decay is measured [9] as

$$
\begin{align*}
& \mathcal{B}\left(D_{s} \rightarrow f_{0} l \bar{\nu}\right) \times \mathcal{B}\left(f_{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& =(2.0 \pm 0.3 \pm 0.1) \times 10^{-3} . \tag{16}
\end{align*}
$$

Thus as an estimation, branching ratios for the cascade $D^{+} \rightarrow S l^{+} \nu$ decays are expected to have the order

$$
\begin{equation*}
\frac{V_{c d}^{2}}{V_{c s}^{2}} \times 2 \times 10^{-3} \sim 1 \times 10^{-4} \tag{17}
\end{equation*}
$$

As for the B decays, the branching ratio of $B \rightarrow S l \bar{\nu}$ can be estimated utilizing the $B \rightarrow \rho l \bar{\nu}$ and $D_{s}^{+} \rightarrow \phi l^{+} \nu$ decays. If the mixing angle is moderate, the branching ratio can be estimated as

$$
\begin{align*}
\mathcal{B}\left(B \rightarrow f_{0} l \bar{\nu}\right) & \sim \mathcal{B}(B \rightarrow \rho l \bar{\nu}) \frac{\mathcal{B}\left(D_{s} \rightarrow f_{0} l \bar{\nu}\right)}{\mathcal{B}\left(D_{s} \rightarrow \phi l \bar{\nu}\right)} \\
& \sim 10^{-4} \times \frac{10^{-3}}{10^{-2}}=10^{-5} . \tag{18}
\end{align*}
$$

Compared with the recently measured semileptonic $B \rightarrow$ η decay [11]

$$
\begin{equation*}
\mathcal{B}\left(B^{-} \rightarrow \eta l^{-} \bar{\nu}\right)=(3.1 \pm 0.6 \pm 0.8) \times 10^{-5} \tag{19}
\end{equation*}
$$

$B \rightarrow J / \psi\left(\eta_{c}\right) f_{0}$

- Semileptonic B decays $B^{+} \rightarrow f_{0} l^{+} \nu_{l}$ are clean, but the neutrino is identified as missing energy, thus the efficiency is limited
- The lepton pair can also be replaced by a charmonium state such as \mathbf{J} / ψ, since \mathbf{J} / ψ does not carry any light flavor either.
- $B \rightarrow J / \psi f_{0}$ decays may provide another ideal probe to detect the internal structure of the scalar mesons.

$$
B \rightarrow J / \psi\left(\eta_{c}\right) f_{0}
$$

- Semileptonic B decays $B^{+} \rightarrow f_{0} l^{+} \nu_{l}$ are clean, but the neutrino is identified as missing energy, thus the efficiency is limited
- The lepton pair can also be replaced by a charmonium state such as \mathbf{J} / ψ, since \mathbf{J} / ψ does not carry any light flavor either.
- $B \rightarrow J / \psi f_{0}$ decays may provide another ideal probe to detect the internal structure of the scalar mesons.

$\mathbf{B} \rightarrow \mathbf{J} / \psi\left(\eta_{\mathrm{c}}\right) \mathbf{S}$

$$
\begin{equation*}
R=\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow f_{0} J / \psi\right)+\mathcal{B}\left(\bar{B}^{0} \rightarrow \sigma J / \psi\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow a_{0}^{0} J / \psi\right)}=1 \tag{20}
\end{equation*}
$$

in the $\bar{q} q$ picture, and

$$
R=\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow f_{0} J / \psi\right)+\mathcal{B}\left(\bar{B}^{0} \rightarrow \sigma J / \psi\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow a_{0}^{0} J / \psi\right)}=3
$$

in the $\bar{q} q \bar{q} q$ picture. Although these are hadronic decays

The branching fraction is expected to have

the order

$$
\begin{align*}
\mathcal{B}\left(B \rightarrow f_{0} J / \psi\right) & \sim \mathcal{B}\left(\bar{B}^{0} \rightarrow \rho^{0} J / \psi\right) \frac{\mathcal{B}\left(D_{s} \rightarrow f_{0} l \bar{\nu}\right)}{\mathcal{B}\left(D_{s} \rightarrow \phi l \bar{\nu}\right)} \\
& \sim 10^{-5} \times \frac{10^{-3}}{10^{-2}}=10^{-6} . \tag{22}
\end{align*}
$$

On experimental side, the J / ψ is easily detected through a lepton pair $l^{+} l^{-}$and thus this mode may be more useful. If the J / ψ meson is replaced by η_{c} in eq. $(20,21)$, one can get the similar sum rules.

Uncertainties mainly from SU(3) breaking

- Form factor difference - no problem, since it makes the R for 4-quark picture even larger than 3
- Mostly by mass difference, only problem:
$m_{\sigma}=(0.4 \sim 1.2) \mathrm{GeV}$, but any way phase space is easy to calculate
- Relatively large uncertainty in D decays. But in B decays, there is no problem, since m_{σ} negligible
- Governed by heavy quark effective theory, the $\mathrm{SU}(3)$ breaking is suppressed by $1 / \mathrm{m}_{\mathrm{Q}}$

Summary

- The semi-leptonic decays of D and/or B mesons to scalar mesons can provide a theoretically clean way to distinguish the 2quark and 4 -quark picture of light scalar mesons
- So as the non-leptonic decays of $B \rightarrow J / \psi\left(\eta_{c}\right) S$

Thank you!

$$
R_{f_{0}}=\frac{\mathcal{B}\left(D / B \rightarrow f_{0} l \nu\right)}{\mathcal{B}\left(D / B \rightarrow a_{0}^{0} l \nu\right)}\left(R_{f_{0}}=\frac{\mathcal{B}\left(B \rightarrow f_{0} J / \psi\right)}{\mathcal{B}\left(B \rightarrow a_{0}^{0} J / \psi\right)}\right)
$$

The measurem ent of ratio R can determine the mixing angle of f_{0} and σ

