Power Suppressed Effects in $\overline{B} \to X_s \gamma$ **at** $\mathcal{O}(\alpha_s)$

Soumitra Nandi

Dipartimento di Fisica Teorica, Univ. di Torino and INFN, Sezione di Torino, Italy

Based on:

T. Ewerth, P. Gambino and SN NPB 830,278,2010 [arXiv:0911.2175 (hep-ph)]

Soumitra Nandi

power corrections $\bar{B} \to X_s \gamma$

ICHEP 2010 (Paris)

- Motivation: Rate and Moments
- Matching (OPE): Tree and at $\mathcal{O}(\alpha_s)$
- Results: $\mathcal{O}(\alpha_s \frac{\Lambda^2_{QCD}}{m_b^2})$ corrections to $\Gamma_{77}(\bar{B} \to X_s \gamma)$ and moments
- Summary

Radiative Decay $b \rightarrow s\gamma$: **Status**

Sensitive to New Physics

• Moreover, inclusive $\overline{B} \to X_s \gamma$ rate is well approximated by the perturbatively calculable radiative decay rate of the *b*-quark

$$\Gamma(b \to X_s \gamma)_{E_{\gamma} > E_0} = \frac{G_F^2 m_b^5 \alpha_{em}}{32 \pi^4} |V_{ts}^* V_{tb}|^2 \sum_{i,j=1}^8 C_i(\mu_b) C_j(\mu_b) G_{ij}(E_0,\mu_b)$$

Wilson Coefficients $C_i(\mu_b)$ are known at NNLO \Rightarrow

$$\begin{split} |C_{1,2}(\mu_b)| &\sim 1, \ |C_{3,4,5,6}(\mu_b)| < 0.07, \ |C_7(\mu_b)| \sim -0.3, \ |C_8(\mu_b)| \sim -0.15 \\ G_{ij}(E_0,\mu_b) \Rightarrow \text{Matrix elements of } O_1, \dots, O_8 \\ \text{Perturbative } \text{NLO} \Rightarrow G_{ij} \ \text{are fully known} \\ \text{Perturbative } \text{NNLO} \Rightarrow G_{ij} \ (i,j=1,2,7,8) \text{ have been considered so far, } G_{77} \text{ and } G_{78} \text{ are known in a complete manner} \\ \end{split}$$

For Complete NNLO G₇₈ see [hep-ph/9903305, arXiv:0805.3911, 1005.5587]

Soumitra Nandi pov

power corrections $\bar{B} \to X_s \gamma$

ICHEP 2010 (Paris)

-p.3/14

Decay rate : SM and Experiment

The inclusive branching ratio: SM and Exp $\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{NNLO} = (3.15 \pm 0.23) \times 10^{-4}$ [hep-ph/0609232] $\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{exp} = (3.52 \pm 0.23 \pm 0.09) \times 10^{-4}$ [HFAG] SM prediction is consistent with Experiment \Rightarrow both have $\pm 7\%$ error \Rightarrow Useful to constrain many extensions of the SM Theoretical error : 5% (assumed) from non-perturbative dynamics, mainly from $\mathcal{O}(\alpha_s \frac{\Lambda_{QCD}}{m_b}) \Rightarrow$ So far quantitative estimate is about 0.7% for detail see [arxiv:0911.1651] & [arxiv:1003.5012]

- Experimental uncertainty is expected to reduce to 5% by the end of *B* factory era
- It is desirable to to reduce the theoretical uncertainty as much as possible both perturbative and non-perturbative

Photon Spectrum: Moments

- Photon energy spectrum is largely insensitive to NP
- Useful for precision studies of perturbative and non-perturbative strong interaction effects
- First moment $\langle E_{\gamma} \rangle \sim m_b/2 \Rightarrow$ Measured spectrum allows precise measurement of the value of bottom quark mass
- Second moment is sensitive to average kinetic energy μ_{π}^2
- Measurements of m_b and μ_{π}^2 using $B \to X_s \gamma$ are complementary to the determinations using the inclusive moments of $B \to X_c \ell \bar{\nu}$
- Contribute in an important way to the global fits for extraction of V_{cb} and V_{ub}

$\Rightarrow \frac{1}{m_h^3}$ corrections were studied	C. W. Bauer [hep-ph/9710513]
\Rightarrow Perturbative corrections of order $eta_0 lpha_s^2$	Ligeti <i>et. al.</i> [hep-ph/9903305]
\Rightarrow All order resummation of $eta_0^{n-1} lpha_s^n$	Benson et. al [hep-ph/0410080]
\Rightarrow Improved predictions based on QCDF and MSOPE	M. Neubert [hep-ph/0506245]
Progress on the theory front improved our understanding of photon spectrum \Rightarrow Uncertainties of both perturbative and non-preturbative origin remain \Rightarrow Need further investigations	

$\mathcal{O}(\alpha_s \Lambda_{OCD}^2/m_b^2)$ corrections: Outline

Non-perturbative corrections to O_7 is known through $\frac{1}{m_h^3}$ [hep-ph/9308288] & [hep-ph/9710513]

- We present the first calculation for non-perturbative corrections to the operator 0_7 at $\mathcal{O}(\alpha_s)$ in $\bar{B} \to X_s \gamma$
- We compute the $\mathcal{O}(\alpha_s)$ corrections to the Wilson coefficients of the dimension five operators emerging from the OPE of inclusive radiative *B* decay:
 - off-shell amputated Green functions has been expanded around b quark mass shell
 - matched them onto local operators in Heavy Quark Effective Theory (HQET)
- Finally we discus the impact of the resulting $O(\alpha_s \frac{\Lambda_{QCD}^2}{m_b^2})$ corrections on the extractions of m_b and μ_{π}^2 from the moments of the photon spectrum

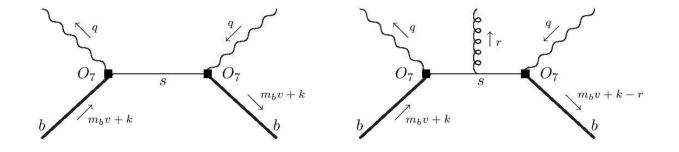
Matching : OPE

Differential decay rate that is induced by 0_7 self-interference

$$d\Gamma_{77}(\bar{B} \to X_s \gamma) = \frac{G_F^2 \alpha_{\rm em} \overline{m}_b^2(\mu)}{16\pi^3 m_B} |V_{tb} V_{ts}^*|^2 |C_7^{\rm eff}(\mu)|^2 \frac{d^3 q}{(2\pi)^3 2E_\gamma} W_{\mu\nu\alpha\beta} P^{\mu\nu\alpha\beta}$$

 $P^{\mu\nu\alpha\beta} = \sum_{\lambda=\pm 1} \langle 0|F^{\mu\nu}|\gamma(q,\lambda)\rangle\langle\gamma(q,\lambda)|F^{\alpha\beta}|0\rangle \Rightarrow \text{Photonic Tensor}$ Hadronic Tensor:

 $W_{\mu\nu\alpha\beta} = 2 \operatorname{Im} \left(i \int d^4 x \, e^{-iq \cdot x} \langle \bar{B}(p_B) | T \left\{ \bar{b}(x) \sigma_{\mu\nu} P_L s(x) \bar{s}(0) \sigma_{\alpha\beta} P_R b(0) \right\} | \bar{B}(p_B) \rangle \right)$ $W_{\mu\nu\alpha\beta} P^{\mu\nu\alpha\beta} = -16\pi m_b \left(c_{\dim 3} O_{\dim 3} + \frac{1}{m_b} c_{\dim 4} O_{\dim 4} + \frac{1}{m_b^2} c_{\dim 5} O_{\dim 5} + \dots \right)$



$$c_{\dim n} = c_{\dim n}^{(0)} + \frac{\alpha_s}{4\pi} c_{\dim n}^{(1)} + \dots$$

– p.7/14

Tree Level Matching

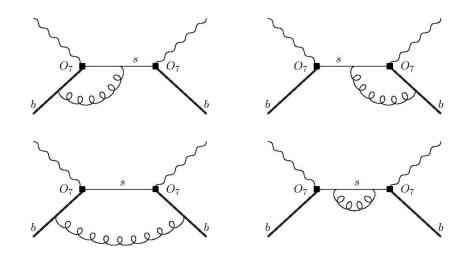
HQET Lagrangian:

$$\begin{split} \mathcal{L}_{\mathrm{HQET}} &= i\bar{b}_{v}v \cdot Db_{v} + \frac{1}{2m_{b}}\bar{b}_{v}(iD_{\perp})^{2}b_{v} - a(\mu)\frac{g_{s}}{4m_{b}}\bar{b}_{v}\sigma_{\mu\nu}G^{\mu\nu}b_{v} + O\left(\frac{1}{m_{b}^{2}}\right) \\ D_{\perp}^{\mu} &= D^{\mu} - v^{\mu}v \cdot D , \qquad a(\mu) = 1 + \left[C_{F} + C_{A}\left(1 + \ln\frac{\mu}{m_{b}}\right)\right]\frac{\alpha_{s}}{4\pi} + \dots \\ b(x) &= e^{-im_{b}v \cdot x}\left(1 + \frac{i\mathcal{P}_{\perp}}{2m_{b}}\right)b_{v}(x) + O\left(\frac{1}{m_{b}^{2}}\right) \\ \text{Taylor expansion of the amputated Green functions corresponding to tree level diagrams gives } \Rightarrow \\ O_{b}^{\mu} &= \bar{b}\gamma^{\mu}b \qquad O_{2}^{\mu\nu} = \bar{b}_{v}\frac{1}{2}\{iD^{\mu}, iD^{\nu}\}b_{v} \\ O_{1}^{\mu} &= \bar{b}_{v}iD^{\mu}b_{v} \qquad O_{3}^{\mu\nu} = \bar{b}_{v}\frac{g_{s}}{2}G^{a\mu}{}_{\alpha}\sigma^{\alpha\nu}T^{a}b_{v} \\ \text{Matrix elements :} \qquad \langle \bar{B}(p_{B})|O_{b}^{\mu}|\bar{B}(p_{B})\rangle = 2m_{B}v^{\mu} \\ \lambda_{1} &= \frac{1}{2m_{B}}\langle \bar{B}(v)|\bar{b}_{v}(iD)^{2}b_{v}|\bar{B}(v)\rangle = -\mu_{\pi}^{2} + O(\frac{1}{m_{b}}) \\ \lambda_{2} &= -\frac{1}{6m_{B}}\langle \bar{B}(v)|\bar{b}_{v}\frac{g_{s}}{2}G_{\mu\nu}\sigma^{\mu\nu}b_{v}|\bar{B}(v)\rangle = \frac{\mu_{G}^{2}}{3} + O(\frac{1}{m_{b}}) \\ \text{Decay rate for electromagnetic operator } \\ \frac{d\Gamma_{77}}{dz} &= \Gamma_{77}^{(0)} \left[c_{0}^{(0)} + c_{\lambda_{1}}^{(0)}\frac{\lambda_{1}}{2m_{b}^{2}} + c_{\lambda_{2}}^{(0)}\frac{\lambda_{2}(\mu)}{2m_{b}^{2}} + \frac{\alpha_{s}(\mu)}{4\pi}\left(c_{0}^{(1)} + c_{\lambda_{1}}^{(1)}\frac{\lambda_{1}}{2m_{b}^{2}} + c_{\lambda_{2}}^{(1)}\frac{\lambda_{2}(\mu)}{2m_{b}^{2}}\right)\right] \\ c_{0}^{(0)} &= \delta(1-z), \quad c_{\lambda_{1}}^{(0)} &= \delta(1-z) - \delta'(1-z) - \frac{1}{3}\delta''(1-z), \quad c_{\lambda_{2}}^{(0)} &= -9\,\delta(1-z) - 3\,\delta'(1-z) \end{split}$$

Soumitra Nandi

power corrections $\bar{B} \rightarrow X_s \gamma$ ICHEP 2010 (Paris)

Matching at $\mathcal{O}(\alpha_s)$



 \Rightarrow One loop diagrams contributing to the Wilson coefficients

 \Rightarrow Sixteen additional diagrams with a gluon radiated off an internal line will also contribute Matching Equation:

Full side + Counter Term \Rightarrow

$$\begin{aligned} & f_0^{\mu} \left(z, \xi, \mu, \frac{1}{\epsilon_{IR}} \right) v_{\mu} + f_{\lambda_1} \left(z, \xi, \mu, \frac{1}{\epsilon_{IR}} \right) \frac{\lambda_1}{2m_b} + f_{\lambda_2} \left(z, \xi, \mu, \frac{1}{\epsilon_{IR}} \right) \frac{\lambda_2}{2m_b} \\ & \text{Effective side at one loop level} \Rightarrow \\ & -16\pi m_b \sum_{n=3}^{\infty} \frac{1}{m_b^{n-3}} \left[c_{\dim n}^{(0)} \langle O_{\dim n} \rangle_{1-\text{loop}} + \left(\frac{\alpha_s}{4\pi} c_{\dim n}^{(1)} + \delta Z_{\dim n} c_{\dim n}^{(0)} \right) \langle O_{\dim n} \rangle_{\text{tree}} \right] \end{aligned}$$

We need to consider only those operators for which Wilson coefficients are non-zero at tree level

Renormalization

- Ultraviolet as well as infrared divergences are handled by dimensional regularization
- For the self-mixing of the operator O_7 we use $\overline{\text{MS}}$ -scheme $\Rightarrow Z_{m_b}^{\overline{\text{MS}}} Z_{77}^{\overline{\text{MS}}} = 1 + \frac{C_F}{\epsilon} \frac{\alpha_s}{4\pi} + \dots$
- For the field renormalization constant of the *b* quark we apply on-shell scheme \Rightarrow $Z_b^{OS} = 1 - C_F \left(\frac{3}{\epsilon} + 4 + 6 \ln \frac{\mu}{m_b}\right) \frac{\alpha_s}{4\pi} + \dots$
- We use \overline{MS} scheme for the operator renormalization \Rightarrow

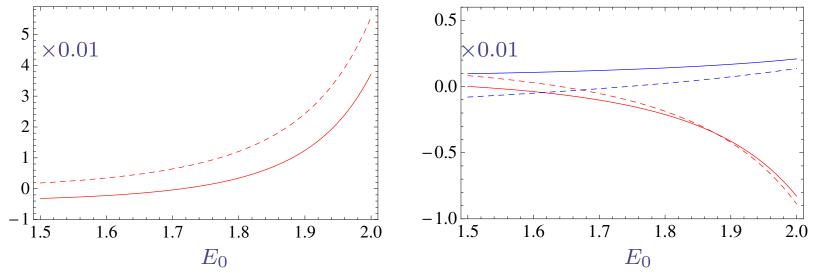
$$\begin{bmatrix} c_{b\mu}O_b^{\mu} \end{bmatrix}^{\text{bare}} = Z_b^{\text{OS}} c_{b\mu}O_b^{\mu}, \qquad \begin{bmatrix} c_{2\mu\nu}O_2^{\mu\nu} \end{bmatrix}^{\text{bare}} = Z_{b\nu}^{\text{OS}} Z_{\text{kin}}^{\text{MS},\mu\nu\alpha\beta} c_{2\mu\nu}O_{2\alpha\beta},$$
$$\begin{bmatrix} c_{1\mu}O_1^{\mu} \end{bmatrix}^{\text{bare}} = Z_{b\nu}^{\text{OS}} c_{1\mu}O_1^{\mu}, \qquad \begin{bmatrix} c_{3\mu\nu}O_3^{\mu\nu} \end{bmatrix}^{\text{bare}} = Z_{b\nu}^{\text{OS}} Z_{\text{chromo}}^{\text{MS},\mu\nu\alpha\beta} c_{3\mu\nu}O_{3\alpha\beta}. \tag{1}$$

A simple one-loop calculation yields \Rightarrow

$$Z_{\rm kin}^{\overline{\rm MS},\mu\nu\alpha\beta} = -C_F \frac{3-\xi}{\epsilon} \left(g^{\mu\nu} - 2v^{\mu}v^{\nu}\right) v^{\alpha}v^{\beta} \frac{\alpha_s}{4\pi} + \dots$$
$$Z_{\rm chromo}^{\overline{\rm MS},\mu\nu\alpha\beta} = \frac{C_A}{\epsilon} \left(g^{\mu\alpha} - v^{\mu}v^{\alpha}\right) g^{\nu\beta} \frac{\alpha_s}{4\pi} + \dots$$
(2)

Soumitra Nandi power corrections $ar{B}
ightarrow X_s \gamma$ ICHEP 2010 (Paris) – p.10/14

Results



Solid Curves \Rightarrow NLO coefficients of λ_1

Dashed Curves \Rightarrow Leading approximation in $\Delta/m_b = (1 - 2\frac{E_0}{m_b})$ Decay rate \Rightarrow left panelFirst moment \Rightarrow right panel (lower red)

Second moment \Rightarrow right panel (upper blue)

 \Rightarrow In the cut rate and second moment, the leading approximation deviates by roughly 50% and -35%, respectively, already at $E_0 = 2 GeV$

 \Rightarrow In the first moment, it is within roughly 10% of the complete result

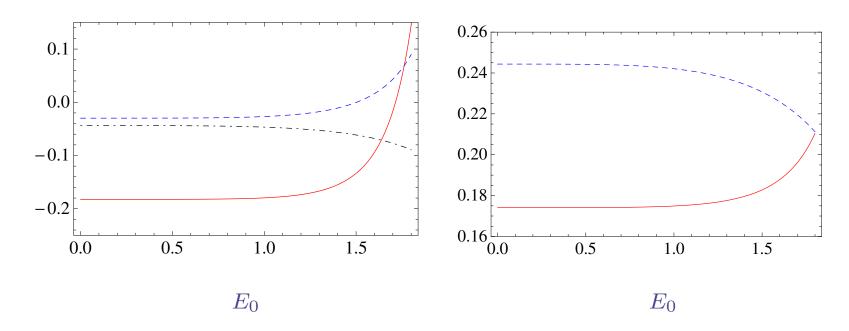
In Conclusion \Rightarrow The range of applicability of leading order approximation [hep-ph/0408179,

0506245] is restricted to the region $E_0 > 2 GeV$

Soumitra Nandi power corrections $B
ightarrow X_s \gamma$ ICHEP 2010 (Paris) – p.11/14

Ratio of NLO to LO

Inputs: $\alpha_s(m_b) = 0.22, \ m_b = 4.6 \text{ GeV}, \ \lambda_1 = -0.4 \text{ GeV}^2, \lambda_2 = 0.12 \text{ GeV}^2$



Left panel \Rightarrow Ratio of NLO to LO coefficient of $\lambda_1 \Rightarrow$ rate (red solid), first moment (blue dashed)

and second moment (black dash-dotted) Right panel \Rightarrow Ratio of NLO to LO coefficient of λ_2

- The NLO corrections to λ_2 are close to 20%
- From second moment we expect to extract a higher value of λ_1 , with our chosen input it is about 10%
- Small correction to the first moment leads to roughly 10 MeV positive shift

Soumitra Nandi power corrections $B \rightarrow X_s \gamma$ ICHEP 2010 (Paris) – p.12/14

Summary

- We present the first calculation of the α_s corrections to Λ^2/m_b^2 in $\bar{B}\to X_s\gamma$
- The effect of NLO corrections on $\bar{B} \to X_s \gamma$ rate is below 1% for $E_0 < 1.8~{\rm GeV}$
- Our results allow for more precise evaluation of the moments of the photon distribution and will improve the determination of m_b and μ_π^2
- Our method is applicable to inclusive semileptonic decay $\Rightarrow O(\alpha_s \mu_{\pi}^2/m_b^2)$ corrections to the moments of $B \to X_c \ell \nu$ have been computed numerically, $O(\alpha_s \mu_G^2/m_b^2)$ corrections are still unknown \Rightarrow We also believe analytical result might be easier to implement in the fitting codes

Stay Tuned for more results !

Soumitra Nandi power corrections $\bar{B} \rightarrow X_s \gamma$ ICHEP 2010 (Paris) – p.14/14