Measurement of Jet Cross Section and Fragmentation

Using Tracks with the ATLAS Detector

Seth Zenz (UC Berkeley/LBNL) for the ATLAS Collaboration

Jets are measured from tracks with $p_T > 500$ MeV reconstructed with the ATLAS Inner Detector in events with a primary vertex, using 370 μb^{-1} of data collected with the Minimum Bias Trigger Scintillators. Trigger and vertexing efficiencies are measured from data to be nearly 100% for events containing jets with $p_T > 4$ GeV and $|\eta| < 0.57$.

Charged Particle Jets

Corrections in this analysis are to the level of charged particle jets: apply anti- k_{T} algorithm [1] with parameter R = 0.4 and 0.6 to all charged primary particles with $p_{\mathsf{T}} > 500$ MeV. Total jet momentum for differential cross-sections and fragmentation distributions thus includes charged particles only. No direct comparison to parton-level quantities or perturbative QCD is possible, but comparisons can be made to the phenomenological models implemented in Monte Carlo generators.

Why use tracks?

Measurement is independent of calorimeter: method is a complement to and cross-check of standard calorimeter-based measurements and has independent systematic uncertainties. Use of Inner Detector and minimum-bias trigger allows measurement down to very low jet momentum, so that the emergence of jets from minimum bias collisions can be studied.

Fragmentation Distributions

Distributions of z for particles in jets ($|\eta_{\rm jet}| < 0.57$) are shown. For each particle in a jet, z is defined to be the component of the particle's momentum along the jet axis, divided by the jet momentum. Data are corrected to particle level using bin-by-bin correction factors derived from GEANT 4 simulation [2] of events generated in PYTHIA 6.421 [3] with the ATLAS MC09 tune [4]. The data are best described by the ATLAS AMBT1 tune [5], with agreement within error for jet p_T > 10 GeV.

References

- [1] M. Cacciari, G. P. Salam, and G. Soyez, *The anti-kt jet clustering algorithm*, JHEP **04** (2008) 063.
- [2] S. Agostinelli and others, GEANT4: A simulation toolkit, Nucl. Instrum. Meth A506 (2003) 250.
 [3] T. Sjorstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2008) 026.
 [4] A. Buckley, H. Hoeth, H. Lacker, H. Schulz, and J. E. von Seggern, Systematic event generator tuning for the LHC, Eur. Phys. J C65 (2010) 331.
- [5] The ATLAS Collaboration, Charged particle multiplicities in pp interactions at sqrt(s) = 0.9 and 7 TeV in a diffractive limited phase-space measured with the ATLAS detector at the LHC and new PYTHIA6 tune, ATLAS-CONF-2010-031.
- [6] G. D'Agostini, A Multidimensional unfolding method based on Bayes' theorem, Nucl. Instrum.
- Meth. **A362** (1995) 487. [7] F. Bopp, R. Engel, and J. Ranft, *Rapidity gaps and the PHOJET Monte Carlo,* hep-ph/9803437

Cross Section vs. p_T

Differential cross sections for charged particle jets ($|\eta|$ et| < 0.57) are shown at right for R = 0.4, 0.6.

Jets produced from reconstructed tracks are corrected to charged particle jets using the Bayesian Iterative Unfolding algorithm [6]. The unfolding procedure corrects for jet-finding efficiency, reconstructed track jets not matched to charged particle jets, and bin-to-bin migration of reconstructed jets due to tracking efficiency and resolution smearing. Detector response is determined from GEANT 4 simulation of events generated in PYTHIA with the ATLAS MC09 tune.

PHOJET [7] agrees best with the cross section data. The ATLAS MC09 and AMBT1 tunes disagree significantly with these data, although they describe single-particle data well.

Systematic uncertainties are summarized in the table below, with values for selected bins given for R = 0.6. The dominant systematic uncertainty in all bins but the highest is due to unknown track-finding efficiency; this is determined by varying the efficiency in toy Monte Carlo samples and computing the change in the final result. The fragmentation/underlying event uncertainty is similarly found by using a variety of tunes in toy MC. At high momentum, there is significant # uncertainty associated with mismeasured high-p_T tracks and the cuts used to veto them. An 11% luminosity uncertainty is not included in the total error band in the figures.

Uncertainty	4 - 6 GeV	14 - 15 GeV	28 - 30 GeV	40 - 45 GeV	70 - 80 GeV
Tracking efficiency	+4% -4%	+7% -7%	+8% -7%	+8% -8%	+9% -8%
Fragmentation/ U.E.	+2% -1%	+0.4% -3%	+2% -0.0%	+2% -1%	+5% -11%
High p_{T} tracks	negligible	negligible	+0.1% -0.7%	+1% -4%	+6% -10%
Unmatched reconstructed jets	±1.0%				
Mismodelling in φ	±1.6%				
Luminosity	±11%				