Z+jet Production at the LHC: ELECTROWEAK RADIATIVE CORRECTIONS

Tobias Kasprzik

In collaboration with A. Denner, S. Dittmaier and A. Mück

Karlsruhe Institute of Technology (KIT), Institut für Theoretische Teilchenphysik (TTP)

22nd July 2010, 35th ICHEP, Paris

Motivation and introduction: The Drell–Yan process

- Overview: Z+jet production at higher oders
 - Details of our calculation
- 4 Numerical results (Preliminary)
 - 5 Summary & outlook

Motivation – Importance of the Drell-Yan Process

- LHC: Z bosons produced with large cross section ($\sim 2 \times 10^7$ events/year), lepton pair easy to reconstruct
 - → Drell-Yan-like processes important "standard candles" at the LHC!
 - Monitor and calibrate the LHC's luminosity
 - Determine lepton energy scale, detector resolution, linearity of detector response
 → Important impact on precision of W-boson mass measurement!
 - Ratio $R_{Z/W} = \sigma_Z / \sigma_W$ important to reduce error on measurement of Γ_W
 - Measure $\sin^2 \Theta_{\text{eff}}^{\text{lep}}$ at the LHC by investigating A_{FB}
 - Constrain PDFs by studying appropriate observables

Motivation – Importance of the Drell-Yan Process

- LHC: Z bosons produced with large cross section (~ 2 × 10⁷ events/year), lepton pair easy to reconstruct
 - → Drell-Yan-like processes important "standard candles" at the LHC!
 - Monitor and calibrate the LHC's luminosity
 - Determine lepton energy scale, detector resolution, linearity of detector response
 → Important impact on precision of W-boson mass measurement!
 - Ratio $R_{Z/W} = \sigma_Z / \sigma_W$ important to reduce error on measurement of Γ_W
 - Measure $\sin^2 \Theta_{\text{eff}}^{\text{lep}}$ at the LHC by investigating A_{FB}
 - Constrain PDFs by studying appropriate observables
- Z+jet(s) events important background to BSM processes
 - \rightarrow Z'-signatures in tail of $m_{\ell\ell}$ distribution

 \rightarrow **Z** + jet $\rightarrow \nu \bar{\nu}$ + jet: Mono-jet event, same signature as for graviton production in certain Extra-Dimension models

Motivation – Importance of the Drell-Yan Process

- LHC: Z bosons produced with large cross section ($\sim 2 \times 10^7$ events/year), lepton pair easy to reconstruct
 - → Drell-Yan-like processes important "standard candles" at the LHC!
 - Monitor and calibrate the LHC's luminosity
 - Determine lepton energy scale, detector resolution, linearity of detector response
 → Important impact on precision of W-boson mass measurement!
 - Ratio $R_{Z/W} = \sigma_Z / \sigma_W$ important to reduce error on measurement of Γ_W
 - Measure $\sin^2 \Theta_{\text{eff}}^{\text{lep}}$ at the LHC by investigating A_{FB}
 - Constrain PDFs by studying appropriate observables
- Z+jet(s) events important background to BSM processes
 - \rightarrow Z'-signatures in tail of $m_{\ell\ell}$ distribution

 \rightarrow **Z** + jet $\rightarrow \nu \bar{\nu}$ + jet: Mono-jet event, same signature as for graviton production in certain Extra-Dimension models

High-precision theoretical predictions necessary!

Reminder: Calculation of Hadronic Cross Sections

Hadronic cross sections

$$d\sigma_{AB}(p_A, p_B) = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b f_{a/A}(x_a, \mu_{\rm F}) f_{b/B}(x_b, \mu_{\rm F}) d\hat{\sigma}_{ab}^{\rm NLO}(p_a, p_b, \mu_{\rm F}, \mu_{\rm R})$$
$$\times \mathcal{F}^{(\ell^-\ell^+ + jet + (jet/\gamma))}(\{\mathcal{O}_{\rm FS}\}), \qquad p_{a,b}^{\mu} = x_{a,b} P_{A,B}^{\mu}$$

Dependence on μ_R, μ_F reduced by inclusion of higher perturbative orders

 F^{(ℓ[−]ℓ⁺+jet+(jet/γ))} incorporates definition of observables {*O*_{FS}} ⊕ phase-space

cuts

Reminder: Calculation of Hadronic Cross Sections

Hadronic cross sections

$$d\sigma_{AB}(p_A, p_B) = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b f_{a/A}(x_a, \mu_{\rm F}) f_{b/B}(x_b, \mu_{\rm F}) d\hat{\sigma}_{ab}^{\rm NLO}(p_a, p_b, \mu_{\rm F}, \mu_{\rm R})$$
$$\times \mathcal{F}^{(\ell^-\ell^+ + jet + (jet/\gamma))}(\{\mathcal{O}_{\rm FS}\}), \qquad p_{a,b}^{\mu} = x_{a,b} P_{A,B}^{\mu}$$

NLO partonic cross section:

$$\hat{\sigma}_{ab}^{\rm NLO} = \hat{\sigma}_{ab}^{\rm LO} + \hat{\sigma}_{ab}^{\rm virt} + \hat{\sigma}_{ab}^{\rm real}$$

Tobias Kasprzik (KIT)

 $pp \rightarrow Z + jet + X at NLO$

Importance of Higher-Order Corrections – QCD

Fixed-order QCD corrections

- NLO corrections can be huge
- Mandatory for reduction of renormalization- and factorization-scale dependence

What we know already:

- NLO (1-loop) corrections to single-Z production
 - matched with parton showers [Frixione, Webber 2006; Alioli, Nason, Oleari, Re 2008]
 - combined with soft-gluon resummation [Bozzi et al. 2008; Berge, Nadolsky, Olness 2006; . . .]
- NNLO (2-loop) corrections to the Drell–Yan process known fully differentially

[Catani, Cieri, Ferrera, de Florian, Grazzini 2009; Melnikov, Petriello 2006; Anastasiou, Dixon, Melnikow, Petriello 2004]

• NLO corrections to Z+jet / Z+2jet production known, e.g. included in MCFM [Campbell, Ellis], NLO V+3jet results computed with BlackHat + SHERPA [Berger, Bern,

Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maître 2009, 2010], Rocket + MCFM [Ellis, Giele, Melnikov, Kunszt, Zanderighi]

Importance of Higher-Order Corrections – QCD

Fixed-order QCD corrections

- NLO corrections can be huge
- Mandatory for reduction of renormalization- and factorization-scale dependence

What we know already:

- NLO (1-loop) corrections to single-Z production
 - matched with parton showers [Frixione, Webber 2006; Alioli, Nason, Oleari, Re 2008]
 - combined with soft-gluon resummation [Bozzi et al. 2008; Berge, Nadolsky, Olness 2006; . . .]
- NNLO (2-loop) corrections to the Drell–Yan process known fully differentially

[Catani, Cieri, Ferrera, de Florian, Grazzini 2009; Melnikov, Petriello 2006; Anastasiou, Dixon, Melnikow, Petriello 2004]

 NLO corrections to Z+jet / Z+2jet production known, e.g. included in MCFM [Campbell, Ellis], NLO V+3jet results computed with BlackHat + SHERPA [Berger, Bern,

Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maître 2009, 2010], Rocket + MCFM [Ellis, Giele, Melnikov, Kunszt, Zanderighi]

Calculate NLO EW corrections, because $\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$

Higher-Order Corrections (II) – EW Contributions

EW Corrections (A summary)

NLO EW corrections known for off-shell single-Z production [Dittmaier, Huber 2009; Arbuzov et

al. 2008; Carloni Calame, Montagna, Nicrosini, Vicini 2007; Zykunov 2007; Baur et al. 2002; Baur, Keller, Sakumoto 1998]

$$pp \rightarrow \ell^- \ell^+ (+\gamma) + X$$

 Virtual EW corrections known for on-shell Z+jet production, including NLL and NNLL approximations [Kühn, Kulesza, Pozzorini, Schulze 2005]

$$pp \rightarrow Z^0 + jet + X$$

Important improvement: Do calculation for intermediate Z boson (physical final state), include γ -emission!

 $pp \rightarrow \mathbf{Z}^0 + jet(+\gamma) + \mathbf{X} \rightarrow \ell^- \ell^+ + jet(+\gamma) + \mathbf{X}$

- Use same setup as for W+jet calculation [Denner, Dittmaier, TK, Mück 2009]
- Study off-shell effects, allow for a realistic event definiton!
- Photon radiation off final-state leptons (absent in on-shell approx.!)
 - → Relevant deviations in the shape of differential cross sections for leptonic FS

LO Contributions

• LO contributions: 3 partonic channels, related by crossing symmetry

$$egin{array}{rcl} q_i \; ar q_i &
ightarrow & Z^0 \; \mathrm{g}, & q = \mathrm{u}, \mathrm{d}, \ q_i \; \mathrm{g} &
ightarrow & Z^0 \; q_i, \ \mathrm{g} \; ar q_i &
ightarrow & Z^0 \; ar q_i \end{array}$$

• Sum over quark flavors (Example: $q \bar{q} \rightarrow Z^0 g$)

$$\sigma^{ ext{LO}}_{ ext{pp}(qar{q})} = \int \mathrm{d}x_a \mathrm{d}x_b \sum_{q= ext{u}, ext{d}} \sum_{i=1}^{f_q} f_{q_i/ ext{p}}(x_a) f_{ar{q}_i/ ext{p}}(x_b) \; \hat{\sigma}^{ ext{LO}}_{q_iar{q}_i
ightarrow Z^0 ext{g}}$$

Partonic LO cross section

$$\hat{\sigma}_{ab}^{\mathrm{LO}} = \frac{1}{2\hat{s}} \int_{\ell^- \ell^+ \mathrm{jet}} \mathrm{dPS} |\mathcal{M}_{\mathrm{LO}}|^2, \quad \hat{s} = (p_a + p_b)^2$$

New: Virtual EW Corrections Overwiev – 1PI Insertions

Box and pentagon insertions:

• We use the G_{μ} scheme to calculate the loop corrections:

$$lpha(0) o lpha_{G_{\mu}} = rac{\sqrt{2}G_{\mu}M_{W}^{2}}{\pi} \left(1 - rac{M_{W}^{2}}{M_{Z}^{2}}
ight), \quad \delta \mathcal{Z}_{e} o \delta \mathcal{Z}_{e} - rac{1}{2}\Delta r$$

● Loops calculated using **Complex-Mass Scheme** [Denner, Dittmaier, Roth, Wieders 2005] (→ backup slide)

Reduction of pentagons directly to boxes avoiding small Gram determinants [Denner, Dittmaier 2003, 2005]

Need to calculate complex scalar one-loop 4-point integrals [Denner, Dittmaier 2010]

New: Real EW Corrections

- Soft singularities due to soft photons
- **Initial-state** collinear singularities due to collinear photon radiation off initial-state quarks → renormalization of PDFs
- **Final-state** collinear singularities due to photon-radiation off final-state leptons and quarks

→ Dipole subtraction for photon radiation off fermions [Dittmaier 1999]

Infrared Singularities

- Occur in real bremsstrahlung corrections as well as in loop diagrams
- Have to be regularized to make them calculable!
- Mass regularization for IR singularities: include small fermion masses m_{ℓ} , m_q and an infinitesimal photon mass λ (Neglect regulator masses in non-singular parts of the calculation!)
 - combine virtual and real corrections $\rightarrow \ln(\lambda)$ dependence drops out.
 - Initial-state collinear singularities absorbed into PDFs
 - Final-state collinear singularities give rise to $\ln(m_{\ell})$ and $\ln(m_q)$ terms in the cross section.

Important: Proper definition of observables!

NLO Electroweak Corrections – IR Singularities

Important: Proper definition of observables!

Collinear photon-quark pair:

- Photon-quark recombination to get rid of unphysical $\ln(m_q)$ terms
- Photon-gluon recombination will lead to soft gluon pole!
- Way out: Distinguish Z+jet from Z+ γ events \rightarrow discard events with $z_{\gamma} = \frac{E_{\gamma}}{E_q + E_{\gamma}} > 0.7 \rightarrow$ residual logs absorbed in **renormalized photon** fragmentation function [Buskulicet al. 1996; Glover, Morgan 1994; Denner, Dittmaier, Gehrmann, Kurz 2010]

$$\left\{ D_{q o \gamma}(z_{\gamma}) = rac{lpha Q_{q}^{2}}{2\pi} P_{q o \gamma}(z_{\gamma}) \left(\ln rac{m_{q}^{2}}{\mu_{\mathrm{F}}^{2}} + 2\ln z_{\gamma} + 1
ight) + D_{q o \gamma}^{\mathrm{ALEPH}, \overline{\mathrm{MS}}}(z_{\gamma}, \mu_{\mathrm{F}})
ight)$$

• Non-perturbative part $D_{q \to \gamma}^{\text{ALEPH}, \overline{\text{MS}}}(z_{\gamma}, \mu_{\text{F}})$ determined by the ALEPH experiment at CERN

NLO Electroweak Corrections - IR Singularities

Important: Proper definition of observables!

A collinear ${\rm e}^\pm + \gamma$ pair cannot be distinguished experimentally

→ recombination necessary → $\ln(m_e)$ drops out (KLN theorem)

collinear-safe observable

A collinear $\mu^{\pm} + \gamma$ pair can be distinguished experimentally

- \rightarrow no recombination necessary
- $\rightarrow \ln(m_{\mu})$ survives
- → physical contributions!
- → enhanced corrections!

non-collinear-safe observable

We have worked out the **dipole subtraction formalism** for non-collinear-safe observables and various QED splittings. [Dittmaier, Kabelschacht, TK 2008]

Numerical Results at the LHC – Preliminary $(Physical \ setup \rightarrow backup \ slide)$

Distribution of the invariant mass $m_{\ell\ell} = \sqrt{(p_{\ell^+} + p_{\ell^-})^2}$

- Typical Breit–Wigner shape of the LO distribution
- Final-state photon radiation systematically shifts events to smaller $m_{\ell\ell} \rightarrow$ huge positive corrections; corrections to total cross section still small (-5%)!
- Note: QCD corrections uniform and of expected size

Numerical Results – Compare Z and W Cross Sections

Distribution of the transverse mass $m_{T,\ell\ell} = \sqrt{2p_{T,\ell} + p_{T,\ell} - (1 - \cos \phi_{\ell\ell})}$

W-PRODUCTION CROSS SECTION:

Numerical Results – Compare Z and W Cross Sections

Distribution of the transverse mass $m_{T,\ell\ell} = \sqrt{2p_{T,\ell} + p_{T,\ell} - (1 - \cos \phi_{\ell\ell})}$

Z-PRODUCTION CROSS SECTION:

Numerical Results – Compare Z and W Cross Sections Preliminary

Distribution of the transverse mass $m_{T,\ell\ell} = \sqrt{2p_{T,\ell} + p_{T,\ell} - (1 - \cos \phi_{\ell\ell})}$

Z-PRODUCTION CROSS SECTION:

- $\sigma(W^+)/\sigma(Z) \sim 5$
- Phase-space-dependent EW corrections 100% bigger in Z-boson production
- QCD corrections of similar size for W and Z production

Tobias Kasprzik (KIT)

 $pp \rightarrow Z + jet + X at NLO$

Summary & Outlook

- We have calculated the full NLO EW corrections to off-shell Z+jet production at the LHC/Tevatron:
 - Consistent treatment of the Z-boson resonance (Complex-Mass Scheme!)
 - All off-shell effects included
 - Non-collinear-safe treatment of final-state γ radiation from leptons
- Calculation fully differential → We can apply any (sensible) phase-space cuts and calculate any differential cross section that might be of interest.
- We have two independent implementations of the calculation
 → reliable check of the results!
- EW corrections are sizeable in certain phase-space regions → should be taken into account in an analysis of experimental data

• Future plans:

- Include final-state multi-photon radiation?
- Investigate phenomenological impact on relevant observables as R_{\pm} , $R_{\rm Z/W}$, $A_{\rm FB}$, ...

Summary & Outlook

- We have calculated the full NLO EW corrections to off-shell Z+jet production at the LHC/Tevatron:
 - Consistent treatment of the Z-boson resonance (Complex-Mass Scheme!)
 - All off-shell effects included
 - Non-collinear-safe treatment of final-state γ radiation from leptons
- Calculation fully differential → We can apply any (sensible) phase-space cuts and calculate any differential cross section that might be of interest.
- We have two independent implementations of the calculation
 → reliable check of the results!
- EW corrections are sizeable in certain phase-space regions → should be taken into account in an analysis of experimental data

• Future plans:

- Include final-state multi-photon radiation?
- Investigate phenomenological impact on relevant observables as R_{\pm} , $R_{\rm Z/W}$, $A_{\rm FB}$, ...

Thank You!

The Complex-Mass Scheme (CMS) for Unstable Particles [Denner, Dittmaier, Roth, Wieders 2005]

A problem with unstable particles

Naive implementation of finite width in gauge-boson propagator:

$$\frac{-\mathrm{i}g^{\mu\nu}}{q^2 - M_{\mathrm{W}}^2 + \mathrm{i}\epsilon} \rightarrow \frac{-\mathrm{i}g^{\mu\nu}}{q^2 - M_{\mathrm{W}}^2 + \mathrm{i}M_{\mathrm{W}}\Gamma_{\mathrm{W}}}$$

 $\Gamma_{\rm W}$ includes Dyson summation of self energies, mixing of perturbative orders \rightarrow might destroy gauge invariance (even at leading order!)

CMS universal solution that respects gauge invariance

- is valid in all phase-space regions

Straightforward implementation:

• LO:
$$M_V^2 \to \mu_V^2 = M_V^2 - iM_V \Gamma_V$$
, $\cos^2 \Theta_W = \frac{\mu_W^2}{\mu_Z^2}$, $V = W, Z$

- NLO:
 - Complex renormalization: $\mathcal{L}_0 \rightarrow \mathcal{L} + \delta \mathcal{L}$, bare (real) Lagrangian unchanged!
 - Evaluate loop integrals with complex masses

Physical Setup – Definition of Observables

Definition of the physical final state:

- **(**) Recombination of photon and nearest lepton if $R_{\gamma,\ell} < 0.1 \rightarrow \tilde{p}_{\ell} = p_{\ell} + k_{\gamma}$
- Secombination of photon and jet (q, g) if $R_{\gamma,jet} < 0.5$
- **NLO QCD:** Recombination of two QCD partons to one jet if $R_{1,2} < 0.5$

Leptonic cuts

- Require $|y_{\ell}| < 2.5$ and $p_{T,\ell} > 25$ GeV for each final-state lepton
- Require $m_{\ell\ell} > 50 \,\text{GeV}$

Jet observables in NLO QCD

- Require at least one hard jet with $|y_{jet}| < 2.5$, $p_{T,jet} > 25 \text{ GeV}$
- **Two-jet veto:** Discard events with two back-to-back jets, require $p_{T,2} < p_{T,1}/2$ \rightarrow reduction of (sizeable) tree-level Z + 2 jet contributions
- Variable scale choice: constant scale $\mu_{\rm R} = \mu_{\rm F} = M_{\rm Z}$, variable scale $\mu_{\rm R} = \mu_{\rm F} = \sqrt{m_{\ell\ell}^2 + p_{\rm T,had}^2} \rightarrow$ adjust scale to kinematics

Lepton-jet separation: Discard event if $R_{\ell,jet} < 0.5$

One-Loop QCD Corrections – Review

NLO QCD contributions at $\mathcal{O}(\alpha_s^2 \alpha^2)$ (sample diagrams)

 Real corrections: 3 generic processes, crossing and 5 active quark flavors lead to ~ 100 different partonic channels_0

$$\begin{array}{rcl} q_i \; \bar{q}_i & \rightarrow & Z^0 \; \mathrm{g} \; \mathrm{g}, & q = \mathrm{u}, \mathrm{d}, \\ \mathrm{u}_i \; \bar{\mathrm{u}}_i & \rightarrow & Z^0 \; \mathrm{d}_j \; \bar{\mathrm{d}}_j, \\ q_i \; \bar{q}_j & \rightarrow & Z^0 \; q_k \; \bar{q}_l \end{array}$$

- Virtual corrections: Self-energies, triangles, box diagrams
- Cross section contributions:

 $\hat{\sigma}^{\text{virt}} + \hat{\sigma}^{\text{real}} = \frac{1}{2\hat{s}} \int_{4} d\text{PS} \; |\mathcal{M}_{\text{real}}|^2 + \frac{1}{2\hat{s}} \int_{3} d\text{PS} \; 2\text{Re}[\mathcal{M}_{\text{virt}}\mathcal{M}_{\text{LO}}^*]$