

W/Z+Jets Results from CDF

Stefano Camarda

IFAE - Barcelona

On Behalf of CDF Collaboration

ICHEP

July 22-28, 2010

Paris

Motivation

- Test perturbative QCD at high Q²
- Background for top measurements and new Physics searches
- 30% 40% uncertainty in some of

the processes (boson + HF)

Latest W/Z + jets results from CDF

New results with 4 to 6 fb⁻¹

- $Z \rightarrow \mu^+ \mu^-$ + jets production cross section
- W + charm production cross section
- $Z + jet P_{T}$ -balance

Previous results

- Z → ee + jets PRL 100, 102001 (2008)
- $W \rightarrow ev + jets$ PRD 77, 011108(R) (2008)
- Z + b PRD 79, 052008 (2009)
- W + b PRL 104, 131801 (2010)

Tevatron and CDF

4

- pp collisions at $\sqrt{s} = 1.96 \text{ TeV}$
- Peak instantaneous luminosity
 ~ 4 x 10³² cm⁻² s⁻¹
- 7.5 fb⁻¹ of integrated luminosity

CDF Detector

- Tracking system
 - Silicon detectors
 - Drift chambers COT _
- 1.4 T Magnetic field
- Calorimeter
 - Electromagnetic calorimeter
 - Hadronic calorimeter
- Muon detectors
 - Wire chambers _
 - Scintillators _
- 3 Level Trigger System •
 - Level $3 \rightarrow \sim 100 \text{ Hz}$

$Z/\gamma^* \rightarrow \mu^+\mu^- + jets$

Updated results with 6 fb⁻¹

Kinematic region

Muons

- P_T > 25 GeV/c
- |η| < 1.0
- $66 < M_{\mu\mu} < 116 \text{ GeV/c}^2$

Jets Midpoint R = 0.7

- P_T > 30 GeV/c
- |Y| < 2.1

Background estimation

Data driven backgrounds (Same Charge tracks)

QCD dijet

• W + jet

• µ fakes

• Z + γ

Diboson

• $Z \rightarrow \tau \tau$

• Top

- ~13000 Z + ≥1 jet data events in 6 fb-1
- Total backgrounds between 5%-10%
- Main background is $Z+\gamma$

Systematic uncertainties

5% to 15% systematic uncertainties Jet Energy Scale is the dominant

- Jet Energy Scale 3 15%
- Data driven backgrounds 1 8%
- Monte Carlo backgrounds 1 3%
- Trigger and Muon ID efficiencies < 1%
- Multiple pp interaction 1 6%
- Primary Vertex acceptance < 1%

 $Z/\gamma^* \rightarrow \mu^+\mu^- + \geq 1$ jet

Good agreement with NLO prediction (MCFM) corrected for non-pQCD effects

 $Z/\gamma^* \rightarrow \mu^+\mu^- + \geq 2$ jet

Good agreement with NLO prediction (MCFM) corrected for non-pQCD effects

$Z/\gamma^* \rightarrow \mu^+ \mu^- + \ge N$ jets

 $Z/\gamma^* \rightarrow e^+e^- + jets$

- Measurement on the e⁺e⁻ channel Published in PRL 100, 102001 (2008) with 1.7 fb⁻¹
- Updated measurement with 2.5 fb⁻¹

and electrons channels

W + single c Production

New results based on 4.3 fb⁻¹ Probe s-content of proton at high Q² g+s ~ 90% g+d ~ 10% Background for single-top, W + H S W^+ **Event Selection** • $W \rightarrow Iv$ selected by high $p_{\tau} e, \mu + MET$ • JETCLU R = 0.4 jet with $E_{\tau} > 20$ GeV/c and let $|\eta| < 2.0$ Charm-jet identified by soft electron tagging (SLT) algorithm Exploit opposite charge correlation between $\sigma_{W+c} \times Br(W \to l \nu) = \frac{N_{data}^{OS-SS} - N_{bkg}^{OS-SS}}{\sqrt{N_{data}^{OS-SS}} - N_{bkg}^{OS-SS}}$ W lepton and SLT electron

W + charm result

Soft electron tagger validation

Main systematic uncertainties:

- Q² 10%
- SLT tagging efficiency 8.8%
- Luminosity 8.3%
- PDF 8%
- ISR/FSR 7%
- Jet Energy Scale 6%

Charm $p_{\tau} > 20$ GeV/c and $|\eta| < 1.5$ $\sigma_{W+c} \times Br(W \rightarrow l \nu) = 21.1 \pm 7.1(stat) \pm 4.6(syst) pb$

NLO prediction (MCFM): $11.0^{+1.4}_{-3.0} pb$

Data and NLO in reasonable agreement

W + charm – μ channel

W + b-jets

Both e and μ channel

- P_T > 20 GeV/c
- $|\eta| < 1.1$ Result with 1.9 fb⁻¹
- MET > 25 GeV

One or two jets (JETCLU R=0.4)

- E_T > 20 GeV
- |η| < 2.0

b-quark composition extracted from fit to secondary vertex mass

 $\sigma_{W+b} \times Br(W \rightarrow l\nu)$ = 2.74 ± 0.27 ± 0.42 pb

 $ALPGENv2 + PYTHIA 6.3 = 0.78 \ pb$ $NLO \ pQCD = 1.22 \pm 0.14 \ pb$

Measured Xs is higher than NLO prediction

Z+jet P₋ balance

Large Z + jets sample, can be used for jets studies

New study based on 4.6 fb⁻¹

- Reduce uncertainties on measured energy of hadronic jets
- Test QCD jet modeling
- Check quark-gluon composition

P₋-balance definition

Mismodeling of large angle FSR in the MC is limiting the uncertainty in hadronic jets energy 19

Summary

- New results on Z + jets in good agreement with NLO predictions
- W + single charm in reasonable agreement
- Z + jet P_{T} balance open new possibilities to improve jet energy measurement
 - \rightarrow Z + jets prospects for 6 fb⁻¹ e/µ channels combination \rightarrow Z/W + HF need more data and better predictions