New Babar Results in FCNC Decays:

Search for $B^+ \rightarrow K^+ \tau^+ \tau^-$ Search for $B^0 \rightarrow \gamma \gamma$

Kevin Flood Univ. of Wisconsin (representing the Babar Collaboration)

ICHEP 2010

Paris France

Search for $B^+ \rightarrow K^+ \tau^+ \tau^-$

• $B \rightarrow X\tau^{+}\tau^{-} SM$ rate similar to $B \rightarrow XI^{+}I^{-}$ (I=e, μ) in the kinematic region accessible to all

Lepton	$0.6\leqslant\hat{s}\leqslant 1$
Electron	8.5×10^{-7}
Muon	$8.5 imes 10^{-7}$
Tau	4.3×10^{-7}

B⁺→K⁺τ⁺τ⁻ ~50% of total inclusive rate
NMSSM rate enhancements could be proportional to (M_τ²/M_µ²) ~ 280

ICHEP 2010

Kevin Flood

Search for $B^+ \rightarrow K^+ \tau^+ \tau^-$: Signal Selection

- Continuum backgrounds are suppressed using $|\cos\theta_T|$, the cosine of the opening angle between the tag B thrust and the rest-of-the-event thrust
 - All signal-side event selection is done subsequent to applying the $|\cos\theta_T|$ selection

- Three charged tracks only
 - one particle ID K+
 - 0.44 < p < 1.4 GeV/c
 - charge opposite B_{tag}
 - one neutral pair of PID e, $\mu,\,\pi$
 - p < 1.59 GeV/c
 - M_{pair} < 2.89 GeV/c²
- $q^2 = (p_{Y4S} p_{tag} p_K)^2 > 14.23 \ GeV^2$
- Missing energy calculated from $(p_{Y4S} p_{tag} p_K p_{\tau 1} p_{\tau 2})$ 4-vector • 1.39 < E_{miss} < 3.38 GeV
- Extra neutral energy < 0.74 GeV
- B→D+X decays are the largest remaining background, and are suppressed by combining the signal K+ with the signal tau daughter of opposite charge assigned a pion mass hypothesis and requiring the resulting invariant mass to be
 - M(Kpi) > 1.96 GeV/c²

<u>Search for $B^+ \rightarrow K^+ \tau^+ \tau^-$: Systematics, Results</u>

Search for $B^0 \rightarrow \gamma \gamma$

ICHEP 2010

Kevin Flood

<u>Search for $B^0 \rightarrow \gamma\gamma$: Motivation, Previous Results</u>

- B⁰ $\rightarrow \gamma\gamma$ is an "effective" FCNC decay which is suppressed by CKM and EM vertex factors compared to b \rightarrow (s,d) γ
- $B_{s,d}^{0} \rightarrow \gamma \gamma$ constrained by $B \rightarrow X_{s,d}^{\gamma} \gamma$
- $|V_{td}/V_{ts}|$ accessible in simple two-body non-hadronic final state
- SM BF ~ 3 × 10⁻⁸ [Bosch and Buchalla, JHEP 0208:054 (2002)]

Experiment	BF (90% CL)	Dataset	Ref.
L3	< 1.9 x 10 ⁻⁵	2.95x10 ⁶ (Z→had)	Acciarri et al. Phys. Lett. B, 363, 1995
BaBar	< 1.7 x 10 ⁻⁶	19 fb ⁻¹	Aubert et al. PRL 87, 24, 2001
Belle	< 6.1 x 10 ⁻⁷	104 fb ⁻¹	Villa et al. PRD 73, 2006

CHEP 2010

Kevin Flood

<u>Search for $B^0 \rightarrow \gamma\gamma$: Strategy, Event Selection</u>

- Blind analysis
- High-energy γ backgrounds $\cdot \pi^0$, η vetos
 - Out-of-time photons
- Small peaking backgrounds characterized with MC
 ~1.2 signal region events
- Continuum rejection with neural network using 19 event shape inputs
- Signal yield extracted from a 2-d fit to mES and DE

Selection		<u>Value(s)</u>
	N Tracks / event	≥ 3
Total Event Energy		< 15.0 GeV
	Cluster Timing	150 ns window
	N cluster crystals	> 10
Cluster isolation Cluster Lateral Moment π ⁰ Likelihood Ratio		> 25 cm
		0.15 ≤ LAT ≤ 0.5
		≤ 0.84
	η Likelihood Ratio	≤ 0.84
	Neural Network	≥ 0.54
Events / 0.03 20000 15000 5000	be defined as a constraint of the second sec	Signal
	01 02 03 04 05	06 07 08 09

NN response

<u>Search for $B^0 \rightarrow \gamma \gamma : \pi^0$, η Vetos</u>

• Signal candidate photons (γ) are paired with lower energy photons (γ') in an event, and the pair's invariant mass $M(\gamma\gamma')$ and the soft photon's energy $E(\gamma')$ are used to construct a likelihood ratio with 2-d correlated likelihoods for signal events and background events obtained from simulated event samples

$$\mathcal{CR}_{i} = \frac{\mathcal{P}_{i}(m_{\gamma\gamma'}, E_{\gamma'})}{\mathcal{P}_{\text{sig}}(m_{\gamma\gamma'}, E_{\gamma'}) + \mathcal{P}_{i}(m_{\gamma\gamma'}, E_{\gamma'})} \quad \Rightarrow \quad i = \pi^{0} \text{ or } \eta$$

<u>Search for $B^{0} \rightarrow \gamma\gamma$: Fit Method</u>

- Signal yield is extracted using a two-dimensional unbinned extended maximum likelihood fit in m_{ES} and ΔE
- Three components in fit
 - (1) Signal: pdf shapes from simulated events, normalization floated
 - (2) Combinatoric Background: shape and normalization floated
 - (3) Peaking Background: pdf shape and normalization from simulated events

Component	mES	DeltaE
Signal	Crystal Ball	Asym Gaussian
Continuum Bkg	ARGUS	Polynomial O(1)
Peaking Bkg	2D Histogram PDF	

- All signal PDF parameters are fixed in the fit
- Peaking background shape and yield are fixed in the fit

ICHEP 2010

Kevin Flood

Search for $B^{0} \rightarrow \gamma \gamma$: Data Fit

- Signal and combinatoric yields, and the slope of the combinatoric mES Argus PDF, are floated in the fit:
 - N signal = 21.3 (+12.8,-11.8)
 - BF(B^o $\rightarrow \gamma \gamma$) = (1.7 +/- 1.1) × 10⁻⁷

<u>Search for $B^0 \rightarrow \gamma\gamma$: Systematics, UL</u>

N signal = 21.3 (+12.8, -11.8) + / - 1.4

 $\mathcal{B}(B^0 \to \gamma \gamma) < 3.2 \times 10^{-7} \ (@ 90\% \text{ CL})$

$B \rightarrow K^*|^+|^-$: FL and AFB Results (349 fb⁻¹, 390×10⁶ BB)

ICHEP 2010

Kevin Flood

22-28 July 2010

14

<u>Summary</u>

- Two new Babar results shown
- First limit on $B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle +} \tau^{\scriptscriptstyle -} \tau^{\scriptscriptstyle -}$

• BF(B⁺ \rightarrow K⁺ τ^{+} τ^{-}) < 0.0033% (90% CL)

- Improvement of $B^0 \rightarrow \gamma \gamma$ upper limit by a factor of two
 - BF(B⁰ $\rightarrow \gamma\gamma$) < 3.2 x 10⁻⁷ (90% CL)
- Further progress in these modes only possible at a highluminosity B Factory
 - * $B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle +} \tau^{\scriptscriptstyle +} \tau^{\scriptscriptstyle -}$ sensitive to LFV effects, NMSSM
 - $B^0 \rightarrow \gamma \gamma$ can probe B meson QCD dynamics and provides a clean way to access $|V_{td}/V_{ts}|$
- $B \rightarrow K^*I^+I^-$ currently being updated to full Babar dataset
 - Results will be reported in a manner allowing trivial combination with recent Belle and CDF results

ICHEP 2010