Measurements of $|V_{us}|$ and Searches for Violation of Lepton Universality and for *CPT* Violation in Tau Decays at *BABAR*

Alberto Lusiani INFN and Scuola Normale Superiore Pisa

(on behalf of the BABAR collaboration)

BABAR is a Tau Factory, $\sigma(\tau^+\tau^-) \approx 0.9 \,\text{nb} \approx \sigma(BB) \approx 1.1 \,\text{nb}$

A.Lusiani (INFN & SNS, Pisa) Measurements of $|V_{us}|$ and Searches for ... at BABAR

absolute BF(
$$\tau \rightarrow \mu \nu \overline{\nu}$$
), BF($\tau \rightarrow \pi \nu$), BF($\tau \rightarrow K \nu$)

ICHEP 2010

35th International Conference On High Energy Physics, 22-28 Jul 2010, Paris, France

ICHEP 2010 35th International Conference On High Energy Physics, 22-28 Jul 2010, Paris, France

Methods for obtaining |V_{us}|

K _{l3}	$\Gamma(K_{\ell 3}) = [V_{us} f_{+}(0)]^{2} \times \langle \text{well known constants} \rangle$
<mark>Κ_{ℓ2}</mark> (Κ/π)	$\frac{\Gamma(K_{\ell 2})}{\Gamma(\pi_{\ell 2})} = \left \frac{V_{us}}{V_{ud}}\right ^2 \frac{f_K^2}{f_\pi^2} \times \langle \text{well known constants} \rangle$
tau K/π	$\frac{\Gamma(\tau \to K\nu)}{\Gamma(\tau \to \pi\nu)} = \left \frac{V_{us}}{V_{ud}}\right ^2 \frac{f_K^2}{f_\pi^2} \times \langle \text{well known constants} \rangle$
$\tau \rightarrow K \nu$ exclusive	$BF(\tau^- \to K^- \nu_\tau) = \frac{G_F^2 f_K^2 V_{us} ^2 m_\tau^3 \tau_\tau}{16\pi\hbar} \left(1 - \frac{m_K^2}{m_\tau^2}\right)^2 S_{EW}$
$\tau \to X_{s} \nu$ inclusive	$\frac{R_{\tau,s}}{ V_{us} ^2} = \frac{R_{\tau,V+A}}{ V_{ud} ^2} - \frac{\delta R_{\tau,SU3}}{\delta R_{\tau,SU3}}$ breaking
unitarity	$ V_{us} ^2 = 1 - V_{ud} ^2 - V_{ub} ^2$

• partial cancellation of theory errors in f_K/f_π

δR_{τ,SU3 breaking} = SU(3) symmetry breaking correction, computed with data & QCD with OPE/FESR
[see e.g. E.Gamiz *et al.*, arXiv:hep-ph/0612154v1, E.Gamiz *et al.*, POS(KAON)08 (2008)]

$|V_{us}|$ from $\tau \rightarrow X_s v$ inclusive is theoretically cleanest

method	theory systematic error for $ V_{us} $		
K _{l3}	<mark>0.58%</mark>	from $\Delta[f_+(0)]$	arXiv:1004.0886v1 [hep-lat]
K _{l2}	0.50%	from $\Delta(f_K/f_\pi)$	arXiv:1005.2323v1 [hep-ph] (FlaviaNet)
$ au o X_{s} v$ inclusive	0.47%	from $\Delta \left(\delta R_{ au, SU3 \text{ breaking}} \right)$	E.Gamiz et al., arXiv:hep-ph/0612154v1
$\tau \rightarrow X_{s} v$ inclusive	0.23%	from $\Delta \left(\delta R_{\tau, SU3 \text{ breaking}} \right)$	E.Gamiz <i>et al.</i> , POS(KAON)08 (2008)

• $|V_{us}|$ from K_{l3} and K_{l2} is already limited by theory uncertainties

Update of tau |V_{us}| measurements

• first $|V_{us}|$ determination using $\tau \to Kv$ absolute rate

• details on $|V_{us}|$ from $\tau \to X_s \nu$ inclusive on next pages

Some details on the computation of $|V_{us}|$ from $\tau \rightarrow X_s \nu$ inclusive

newly formed HFAG-tau group S.Banerjee, K.Hayasaka, H.Hayashii, A.L., J.M.Roney, B.Shwartz

- using PDG 2009 measurements inputs plus all available recent tau preliminary results
- taking into account correlated systematics, also across experiments
- ▶ no PDG-style S-factors are used, quote CL or χ^2 /d.o.f.
- will release official results soon, including $|V_{us}|$ from tau's
- here personal elaboration using HFAG tau's inputs and techniques
- $\tau \rightarrow X_s \nu$ measurements list revisited
 - ► Rev.Mod.Phys. 78 (2006) 1043 estimates for $\tau \to K3\pi\nu \& \tau \to K4\pi\nu$ replaced with results of HFAG unconstrained fit on all measured tau BRs
 - include best complete non overlapping set of modes

ICHEP 2008 $\tau \rightarrow X_s v$

hadronic system in $\tau \to X_S v$	BF [%]	Keterences
K^- [from $ au$ decay]	0.690 ± 0.010	PDG 2006 + BABAR 2008 prelim.
[indirect, from $K_{\mu 2}$]	(0.715 ± 0.004)	E.Gamiz et al., PoSKAON:008,2008
$\kappa^{-}\pi^{0}$	0.426 ± 0.016	Aubert:2007jh
$\overline{\kappa}^0 \pi^-$	$0.835 \pm 0.022 \ (S = 1.4)$	Epifanov:2007rf, Aubert:2008an
$\kappa^{-}\pi^{0}\pi^{0}$	0.058 ± 0.024	Yao:2006px
$\overline{\kappa}{}^{0}\pi^{0}\pi^{-}$	0.360 ± 0.040	Yao:2006px
$K^-\pi^-\pi^+$	0.290 ± 0.018 (<i>S</i> = 2.3)	Aubert:2007mh, Inami:2008kt
$K^-\eta$	0.016 ± 0.001	Inami:2008ar
$(\overline{K}3\pi)^-$ (est'd)	0.074 ± 0.030	Davier:2005xq
$K_1(1270) \rightarrow K^- \omega$	0.067 ± 0.021	Davier:2005xq
$(\overline{K}4\pi)^{-}$ (est'd)	0.011 ± 0.007	Davier:2005xq
$K^{*-}\eta$	0.014 ± 0.001	Inami:2008ar
$K^-\phi$	$0.0037 \pm 0.0003 \ (S = 1.3)$	Inami:2006vd,Aubert:2007mh
TOTAL using only tau's	2.8447 ± 0.0688	
TOTAL using $K \rightarrow \mu \nu$ to get $\tau \rightarrow K \nu$	(2.8697 ± 0.0680)	
(arXiv:0811.1429v3 [hep-ex])		

ICHEP 2010 $\tau \rightarrow X_{s} v$

hadronic system in $\tau \rightarrow X_{-Y}$	BE [%]	B-factories contributions			
κ-	0.696 ± 0.010	BABAR 2010 PRL accepted			
$K^{-}\pi^{0}$	0.431 ± 0.015	BABAR 2007			
$K^{-}\pi^{0}\pi^{0}(ex.K^{0})$	0.060 ± 0.022				
$K^-\pi^0\pi^0\pi^0(ex.K^0,\eta)$	0.044 ± 0.022				
$\overline{K}^0\pi^-$	0.827 ± 0.018	Belle 2008, <i>B</i> ABAR 2008			
$\overline{K}^0 \pi^- \pi^0$	0.349 ± 0.015	BABAR 2009 prelim.			
$\overline{K}^0 \pi^- \pi^0 \pi^0$	0.023 ± 0.023				
K ⁰ h ⁻ h ⁺ h ⁻	0.023 ± 0.020				
$K^-\pi^-\pi^+(ex.K^0)$	0.294 ± 0.007	BABAR 2008, Belle 2010			
$\mathcal{K}^{-}\pi^{-}\pi^{+}\pi^{0}(ex.\mathcal{K}^{0},\eta)$	0.075 ± 0.012				
$K^-\eta$	0.016 ± 0.001	Belle 2009			
$\kappa^-\eta\pi^0$	0.0048 ± 0.0012	Belle 2009			
$\overline{K}^0\eta\pi^-$	0.0094 ± 0.0015	Belle 2009			
K ⁻ K ⁺ K ⁻	0.0022 ± 0.0001	Belle 2006, <i>B</i> ABAR 2007			
$K^- K^0 \overline{K}^0$ from $K^- K^+ K^- \cdot \frac{\phi \to K^0 \overline{K}^0}{\phi \to K^+ K^-}$	0.0015 ± 0.0001	$(K^-\phi, \phi \to K^+K^- \text{ saturates } K^-K^+K^-)$			
TOTAL using only tau's	2.8570 ± 0.0582	error also depends on correlations			
(BRs obtained by HFAG unconstrained fit (personal elaboration), χ^2 /d.o.f = 155/114)					

$|V_{us}|$ from $\tau \rightarrow X_s \nu$ inclusive, additional notes

- $BF(\tau \to X_{V+A}\nu) + BF(\tau \to X_{S}\nu) = BF(\tau \to X_{h}\nu)$ is set to $1 BF(\tau \to e\nu\overline{\nu})_{UNIV} BF(\tau \to \mu\nu\overline{\nu})_{UNIV}$
 - ► BF $(\tau \rightarrow e \nu \overline{\nu})_{\text{UNIV}}$ and BF $(\tau \rightarrow \mu \nu \overline{\nu})_{\text{UNIV}}$ defined as in Rev.Mod.Phys. 78 (2006) 1043
 - ▶ preliminary computation of $BF(\tau \rightarrow \ell \nu \overline{\nu})_{UNIV}$ in HFAG-tau context
- $\delta R_{\tau,SU3 \text{ breaking}} = 0.240 \pm 0.032$, E.Gamiz et al., arXiv:hep-ph/0612154v1 (conservative theory error)
- $|V_{ud}| = 0.97425 \pm 0.00022$, Towner-Hardy, 2009
- $|V_{us}|$ from Kaons and unitarity from FlaviaNet report arXiv:1005.2323v1 [hep-ph]

 $\frac{M_{\tau} = 1776.68 \pm 0.12 \text{ (stat.)} \pm 0.41 \text{ (syst.) MeV}}{\frac{M_{\tau+} - M_{\tau-}}{M_{\text{average}}} = -3.4 \pm 1.3 \text{ (stat.)} \pm 0.3 \text{ (syst.)} \cdot 10^{-4}$

dominant systematic uncertainty: absolute momentum measurement calibrated on Ks and D masses

Conclusions

