Study of Charmless Hadronic

 B decays at $B A B A R$Alessandro Gaz University of Colorado

Representing the BABAR Collaboration

> July $23^{\text {rd }} 2010$
> ICHEP 2010, Paris

Motivations

- Charmless hadronic B decays are sensitive probes to investigate potential effects of new physics:
\rightarrow shift of time-dependent CP-asymmetries;
\rightarrow suppression/enhancement of branching fractions;
\rightarrow...;
- "Polarization puzzle": in several $V V$ decays (such as ϕK^{*} or ρK^{*}) the longitudinal polarization fraction f_{L} is ~ 0.5, contrary to the prediction of $f_{L} \sim 0.9$ based on simple helicity arguments. Still to be fully explained;
- We can investigate new/poorly known resonances through the Dalitz Plot analysis of charmless three-body B decays;

The measurements I will present today exploit the full BaBar dataset ($\sim 465 \times 10^{6} B \bar{B}$ pairs).

Kinematics of B decays

- Fully reconstructed B mesons: two variables are commonly used (exploiting the precise knowledge of the beam energy):

$$
\Delta E=E_{\text {meas }}-E_{\text {beam }}
$$

$$
m_{E S}=\sqrt{E_{b e a m}^{2}-\mathbf{p}_{m e a s}^{2}}
$$

Signal

- Dominant background: $q \bar{q}(q=u, d, s, c)$. Reduced by means of a Fisher discriminant / Neural Network exploiting event shape variables ($B \bar{B}$ events are spherical, $q \bar{q}$ jet-like)

Two-body Decays

- Search for $B \rightarrow \eta^{\prime} \rho, \eta^{\prime} f_{o}, \eta^{\prime} K^{*}$; arXiv:1004.0240 [hep-ex] - Accepted by PRD-RC
- Search for $B^{+} \rightarrow a_{1}^{+} K^{*}$; arXiv:1007.2732 [hep-ex] - Submitted to PRD-RC

Two-body: motivations

- Search for $B \rightarrow \eta^{\prime} \rho, \eta^{\prime} f_{o}, \eta^{\prime} K^{*}$:
\rightarrow Confirm the predicted pattern of interference for $B \rightarrow \eta / \eta^{\prime} X$ decays;
$B^{+} \rightarrow \eta^{\prime} \rho^{+} \quad$ Predicted $\mathcal{B}\left(10^{-6}\right)$
\rightarrow Discrepancies among theory models in the predicted BF of $B \rightarrow \eta^{\prime} \rho^{+}$. Also poor agreement between Belle's result and

SCET	$0.4_{-0.2}^{+3.2}$
QCDF	$6.3_{-3.3}^{+2.8}$
pQCD	$8.7_{-2.5}^{+3+3}$

\rightarrow We fit simultaneously for three K^{*} components: $K^{*}(892), K_{2}^{*}(1430)$, and the scalar $K_{o}^{*}(1430)+$ non-resonant $K \pi$ (we use the LASS parameterization) ;

- Search for $B^{+} \rightarrow a_{1}^{+} K^{*}$:
\rightarrow Verify and constrain theory models: QCDF predicts a BF $\sim 11 \times 10^{6}$, while naïve factorization predicts $\sim 10^{6}$;
\rightarrow Investigate the polarization puzzle.

Search for $\boldsymbol{B} \rightarrow \eta^{\prime} \rho / \eta^{\prime} f_{o} / \eta^{\prime} K^{*}$

$\pi \pi / K \pi$
invariant mass

Total
Total bkg Total signal $K^{*}(892)$
$K_{2}^{*}(1430)$
Scalar $K \pi$
helicity

- First observation of: $\eta^{\prime} \rho^{+}, \eta^{\prime} K_{0}^{*}(1430)^{0}, \eta^{\prime} K_{2}^{*}(1430)^{+}, \eta^{\prime} K_{2}^{*}(1430)^{0}$;
- Evidence of: $\eta^{\prime} K^{*}(892)^{+}, \eta^{\prime} K^{*}(892)^{0}, \eta^{\prime} K_{o}^{*}(1430)^{+}$;
- Our result on $\eta^{\prime} \rho^{+}$favors the predictions of pQCD and QCDF, confirmed suppression of $\eta^{\prime} K^{*}$ with respect to ηK^{*};
- Enhancement of the tensor component $K_{2}^{*}(1430)$ over the vector $K^{*}(892)$ not anticipated by the theory. This was observed also in ωK^{*}, but not in ηK^{*}.

Search for B^{+}

- Maximum likelihood fit to the variables: $\mathrm{m}_{\mathrm{ES}}, \Delta \mathrm{E}$, Fisher, $\mathrm{m}(\rho \pi), \mathrm{m}(K \pi), \mathrm{H}\left(\mathrm{a}_{1}\right), \mathrm{H}\left(K^{*}\right)$
- No significant signal found, we set the upper limit:

$$
\begin{aligned}
\mathrm{BF}\left(B^{+}\right. & \left.\rightarrow a_{1}^{+} K^{* 0}\right) \times \operatorname{BF}\left(a_{1}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right) \\
& <\left(1.8 \times 10^{-6}\right)(\text { at } 90 \% \mathrm{CL})
\end{aligned}
$$

- Naïve factorization predictions favored over QCDF;

- Dominant systematic uncertainty from ignorance about f_{L} (nominal fit with $f_{L}=1$ to get the most conservative
 upper limit).

Three-body Decays

- Inclusive branching fraction of $B^{+} \rightarrow K^{+} \pi^{0} \pi^{0}$; arXiv:1005.3717 [hep-ex] - Presented at FPCP 2010
- Observation of the rare decay $B^{0} \rightarrow K_{s}^{0} K \pi$;
arXiv:1003.0640 [hep-ex] - Submitted to PRD-RC
- Amplitude analysis of $B^{0} \rightarrow K_{s}^{0} K_{s}^{0} K_{s}^{0}$;

Presented at FPCP 2010

Three-body: motivations

- $B^{+} \rightarrow K^{+} \pi^{0} \pi^{0}$:
\rightarrow help solving the "K π puzzle" looking at the similar $K^{*} \pi$;
\rightarrow Investigate the poorly known $f_{x}(1300)$, seen to decay to $\pi^{+} \pi^{-}$;
- $B^{0} \rightarrow K_{s}^{0} K \pi$:
\rightarrow Decay proceeding through $b \rightarrow u$ tree and $b \rightarrow d$ penguin amplitudes;
\rightarrow Search for an isospin partner of the $f_{x}(1500)$ seen decaying to $K^{+} K^{-}$ in $B^{+} \rightarrow K^{+} K^{-} \pi^{+}$, but not in $B^{+} \rightarrow K_{s}^{0} K_{s}^{0} \pi^{+}$;
- $B^{0} \rightarrow K_{s}^{0} K_{s}^{0} K_{s}^{0}:$
\rightarrow First amplitude analysis of this mode;
\rightarrow Investigate the nature of the $f_{x}(1500)$.

Inclusive BF of $B^{+} \rightarrow \boldsymbol{K}^{+} \pi^{0} \pi^{0}$

Fit results:
$\mathrm{N}_{\mathrm{slg}}=1220 \pm 85$
$\mathrm{f}_{\text {SCF }}=9.7 \%$
Significance 10 σ (15.6 σ stat only)

- We measure the branching fraction:

$$
\mathrm{BF}\left(B^{+} \rightarrow K^{+} \pi^{0} \pi^{0}\right)=(15.5 \pm 1.1 \pm 1.6) \times 10^{6}
$$

- Dominant systematic uncertainties: π^{0} reconstruction efficiency (6.0\%), $\mathrm{NN}_{\text {out }}$ PDF shape (4.9\%), $\Delta \mathrm{E}$ cut efficiency (4.0\%).

Observation of $B^{0} \rightarrow K_{5}^{0} K \pi$
 s

$\mathrm{BF}\left(B^{0} \rightarrow K_{s}^{0} K \pi\right)=(3.2 \pm 0.5 \pm 0.3) \times 10^{-6}$

- Dominant systematic uncertainties: signal PDF's (5.2\%), corrections due to vetoes (4.1\%), self-crossfeed fraction (3\%).

Fit results:

$$
N_{\text {slg }}=262 \pm 47
$$

Significance 5.2σ (6.0 σ stat only)

No evidence of an isospin partner of the $f_{x}(1500)$

Amplitude analysis of $B^{0} \rightarrow K_{s}^{0} K_{s}^{0} K_{s}^{0}$

- Three identical particles in the final state: the analysis can be done only in $1 / 6^{\text {th }}$ of the Dalitz Plot. We use the variables $s_{\text {max }}$ and $s_{m / n}$, and we move to the Squared Dalitz Plot formalism:

Standard DP

$$
\begin{aligned}
s_{\min } & =\min \left(s_{12}, s_{23}, s_{13}\right) \\
s_{\max } & =\max \left(s_{12}, s_{23}, s_{13}\right) \\
s_{x y} & =m_{x y}^{2}
\end{aligned}
$$

Squared DP

$$
\begin{aligned}
s_{\min } & \rightarrow \cos \theta_{\min } \equiv h_{\min } \\
s_{\max } & \rightarrow \cos \theta_{\max } \equiv h_{\max } \\
d s_{\min } d s_{\max } & \rightarrow|\operatorname{det} J| d h_{\min } d h_{\max }
\end{aligned}
$$

- The isobar model is used to describe the DP structure:

$$
\mathcal{A}\left(s_{\min }, s_{\max }\right)=\sum_{j=1}^{N} c_{j} F_{j}\left(s_{\min }, s_{\max }\right)
$$

Amplitude analysis of $B^{0} \rightarrow K_{s}{ }^{0} K_{s}{ }^{0} K_{s}{ }^{0}$

- 200 ± 15 signal events ($305 \pm 18 q \bar{q})$;
- We start with a baseline model with $f_{o}(980), \chi_{c 0}$, and non-resonant. We add a resonance and scan the likelihood varying its mass and width;

Scan for a scalar resonance

Scan for a tensor resonance

- We only find significant contributions from f_{o} (1710) and f_{2} (2010), no evidence of the f_{x} (1500);
- We measure the inclusive branching fraction:

$$
\mathrm{BF}\left(B^{0} \rightarrow K_{s} K_{s} K_{s}\right)=(6.5 \pm 0.5 \pm 0.4) \times 10^{-6}
$$

Conclusions

Search for $B \rightarrow \eta^{\prime} \rho, \eta^{\prime} f_{0}, \eta^{\prime} K^{*}$	Four first observations ($>5 \sigma$) and evidence ($>3 \sigma$) for three more modes. Unexpected enhancement of the tensor component over the vector in $\eta^{\prime} K^{*}$
Search for $B^{+} \rightarrow a_{1}^{+} K^{*}$	No signal found: upper limit sets useful constraints for theoretical models
Inclusive BF of $B \rightarrow K^{+} \pi^{0} \pi^{0}$	First measurement of the inclusive mode, next we will measure the $K^{*} \pi$ branching fraction
Measurement of $B^{0} \rightarrow K_{s}^{0} K \pi$	No evidence of an isospin partner of the $f_{x}(1500)$
Amplitude analysis of $B^{0} \rightarrow K_{s} K_{s} K_{s}$	First amplitude analysis of this mode, no evidence of the $f_{x}(1500)$ decaying to $K_{s} K_{s}$

- Two years after the end of the data taking, BaBar continues to exploit its rich dataset, more results will be coming...

Backup Slides

The PEP-II Collider

The BABAR detector

Search for B $\rightarrow \eta^{\prime} \rho / \eta^{\prime} f_{o} / \eta^{\prime} K^{*}$

Mode	Y (events)	$\begin{aligned} & Y_{0} \\ & (\text { events) } \end{aligned}$	$\begin{gathered} \epsilon \\ (\%) \end{gathered}$	$\prod_{(\%)} \mathcal{B}_{i}$	$\begin{gathered} S \\ (\sigma) \end{gathered}$	$\begin{gathered} \mathcal{B} \\ \left(10^{-6}\right) \end{gathered}$	$\begin{aligned} & \mathcal{B} \text { U.L. } \\ & \left(10^{-6}\right) \end{aligned}$	$\mathcal{A}_{\text {ch }}$
$\eta^{\prime} \rho^{0}$	37 ± 15	9 ± 5	23.4	17.5	2.0	$1.5 \pm 0.8 \pm 0.3$	2.8	-
$\eta^{\prime} f_{0}$	8 ± 8	4 ± 2	25.9	17.5	0.5	$0.2_{-0.3}^{+0.4} \pm 0.1$	0.9	-
$\eta^{\prime} \rho^{+}$	128 ± 22	15 ± 8	14.3	17.5	5.8	$9.7_{-1.8}^{+1.9} \pm 1.1$	-	$0.26 \pm 0.17 \pm 0.02$
$\begin{gathered} \hline \eta^{\prime} K^{*}(892)^{0} \\ \eta_{\eta \pi \pi}^{\prime} K^{*}(892)^{0} \\ \eta_{\rho \gamma}^{\prime} K^{*}(892)^{0} \end{gathered}$	$\begin{aligned} & 28 \pm 10 \\ & 61 \pm 18 \end{aligned}$	4 ± 2 9 ± 5	18.9 13.3	11.7 19.6	4.0 2.7 3.1	$\begin{aligned} & 3.1_{-0.8}^{+0.9} \pm 0.3 \\ & 2.4_{-0.9}^{+1.1} \pm 0.3 \\ & 4.3_{-1.5}^{+1.6} \pm 0.5 \end{aligned}$	4.4	$\begin{gathered} 0.02 \pm 0.23 \pm 0.02 \\ -0.04 \pm 0.35 \\ 0.06 \pm 0.29 \end{gathered}$
$\begin{aligned} & \hline \eta^{\prime} K^{*}(892)^{+} \\ & \eta_{\eta \pi \pi}^{\prime} K^{*}(892)_{K^{+} \pi^{0}}^{+} \\ & \eta_{\rho \gamma}^{\prime} K^{*}(892)_{K}^{+}+\pi^{0} \\ & \eta_{\eta \pi \pi}^{\prime} K^{*}(892)_{K_{S}^{0} \pi^{+}}^{+} \\ & \eta_{\rho \gamma}^{\prime} K^{*}(892)_{K_{S}^{0} \pi^{+}}^{+} \end{aligned}$	$\begin{gathered} 14 \pm 8 \\ 26 \pm 19 \\ 23 \pm 10 \\ 34 \pm 15 \end{gathered}$	$\begin{gathered} 2 \pm 1 \\ 6 \pm 3 \\ 3 \pm 2 \\ 10 \pm 5 \end{gathered}$	11.5 9.7 19.1 16.2	5.8 9.8 4.0 6.8	3.8 2.0 1.1 2.6 1.6	$\begin{aligned} & 4.8_{-1.4}^{+1.6} \pm 0.8 \\ & 3.9_{-2.1}^{+3.1} \pm 0.5 \\ & 4.7_{-4.1}^{+4.5} \pm 1.3 \\ & 5.5_{-2.4}^{+2.9} \pm 0.7 \\ & 4.8_{-2.8}^{+3.2} \pm 1.2 \end{aligned}$	7.2	$\begin{aligned} -0.26 & \pm 0.27 \pm 0.02 \\ -1.00 & \pm 0.78 \\ 0.05 & \pm 0.66 \\ -0.47 & \pm 0.37 \\ 0.24 & \pm 0.44 \end{aligned}$
$\begin{gathered} \hline \eta^{\prime}(K \pi)_{0}^{* 0} \\ \eta_{\eta \pi \pi}^{\prime}(K \pi)_{0}^{* 0} \\ \eta_{\rho \gamma}^{\prime}(K \pi)_{0}^{* 0} \end{gathered}$	106 ± 21 115 ± 36	12 ± 6 21 ± 11	20.2 17.6	11.7 19.6	5.6 4.9 2.7	$\begin{aligned} & 7.4_{-1.4}^{+1.5} \pm 0.6 \\ & 8.5_{-1.9}^{+2.0} \pm 1.0 \\ & 5.8_{-2.2}^{+2.3} \pm 1.0 \end{aligned}$	-	$\begin{gathered} -0.19 \pm 0.17 \pm 0.02 \\ -0.39 \pm 0.20 \\ 0.32 \pm 0.31 \end{gathered}$
$\begin{gathered} \hline \eta^{\prime}(K \pi)_{0}^{*+} \\ \eta_{\eta \pi \pi}^{\prime}\left(K^{+} \pi^{0}\right)_{0}^{*+} \\ \eta_{\rho \gamma}^{\prime}\left(K^{+} \pi^{0}\right)_{0}^{*+} \\ \eta_{\eta \pi \pi}^{\prime}\left(K_{S}^{0} \pi^{+}\right)_{0}^{*+} \\ \eta_{\rho \gamma}^{\prime}\left(K_{S}^{0} \pi^{+}\right)_{0}^{*+} \end{gathered}$	$\begin{gathered} 36 \pm 15 \\ 185 \pm 51 \\ 18 \pm 12 \\ -29 \pm 22 \end{gathered}$	$\begin{gathered} 2 \pm 1 \\ 31 \pm 15 \\ 1 \pm 1 \\ -8 \pm 4 \end{gathered}$	$\begin{aligned} & 13.9 \\ & 12.8 \\ & 18.6 \\ & 17.4 \end{aligned}$	5.8 9.8 4.0 6.8	2.9 2.4 2.8 1.6	$\begin{gathered} 6.0_{-2.0}^{+2.2} \pm 0.9 \\ 8.8_{-3.0}^{+4.2} \pm 1.3 \\ 26.4_{-8.5}^{+9.0} \pm 5.9 \\ 5.1_{-3.2}^{+3.5} \pm 0.9 \\ -3.8_{-3.9}^{+4.0} \pm 1.5 \end{gathered}$	9.3	$\begin{aligned} 0.06 & \pm 0.20 \pm 0.02 \\ 0.00 & \pm 0.41 \\ 0.23 & \pm 0.27 \\ 0.13 & \pm 0.59 \\ -0.40 & \pm 1.48 \end{aligned}$
$\begin{aligned} & \hline \eta^{\prime} K_{2}^{*}(1430)^{0} \\ & \eta_{\eta \pi \pi}^{\prime} K_{2}^{*}(1430)^{0} \\ & \eta_{\rho \gamma}^{\prime} K_{2}^{*}(1430)^{0} \end{aligned}$	$\begin{gathered} 42 \pm 13 \\ 125 \pm 26 \end{gathered}$	2 ± 1 20 ± 10	15.1 10.6	5.8 9.8	5.3 3.7 4.1	$\begin{gathered} 13.7_{-2.9}^{+3.0} \pm 1.2 \\ 9.8_{-3.2}^{+3.4} \pm 0.9 \\ 21.7_{-5.3}^{+5.4} \pm 3.0 \end{gathered}$	-	$\begin{gathered} 0.14 \pm 0.18 \pm 0.02 \\ 0.58 \pm 0.32 \\ -0.05 \pm 0.20 \end{gathered}$
$\begin{aligned} & \hline \eta^{\prime} K_{2}^{*}(1430)^{+} \\ & \eta_{\eta \pi \pi}^{\prime} K_{2}^{*}(1430)_{K^{+} \pi^{o}}^{+} \\ & \eta_{\rho \gamma}^{\prime} K_{2}^{*}(1430)_{K}^{+}+\pi^{0} \\ & \eta_{\eta \pi \pi}^{\prime} K_{2}^{*}(1430)_{K_{S}^{0} \pi^{+}}^{+} \\ & \eta_{\rho \gamma}^{\prime} K_{2}^{*}(1430)_{K_{S}^{0} \pi^{+}}^{+} \end{aligned}$	$\begin{gathered} 42 \pm 11 \\ 115 \pm 28 \\ 42 \pm 10 \\ 62 \pm 16 \end{gathered}$	$\begin{gathered} 5 \pm 3 \\ 20 \pm 10 \\ 5 \pm 2 \\ 14 \pm 7 \end{gathered}$	9.9 8.5 15.3 12.4	2.9 4.9 2.0 3.4	7.2 3.5 2.9 4.5 3.0	$\begin{aligned} 28.0_{-4.3}^{+4.6} & \pm 2.6 \\ 27.1_{-18.1}^{8.8} & \pm 4.5 \\ 46.2_{-13.8}^{+14.4} & \pm 12.2 \\ 25.9_{-7.1}^{+7.8} & \pm 2.7 \\ 24.1_{-8.0}^{+8.7} & \pm 4.1 \end{aligned}$	-	$\begin{aligned} 0.15 & \pm 0.13 \pm 0.02 \\ 0.29 & \pm 0.25 \\ -0.33 & \pm 0.24 \\ 0.44 & \pm 0.23 \\ 0.22 & \pm 0.25 \end{aligned}$

Search for $B \rightarrow \eta$ ' $\rho \eta^{\prime} f_{o} / \eta^{\prime} K^{*}$

Previous results ($\times 10^{-6}$)

Mode	$B A B A R$	Belle
$B^{+} \rightarrow \eta^{\prime} \rho^{+}$	$8.7_{-2.8-1.3}^{+3.1+2.3}$	<5.8
$B^{0} \rightarrow \eta^{\prime} \rho^{0}$	<3.7	<1.3
$B^{0} \rightarrow \eta^{\prime} K^{* 0}$	$3.8 \pm 1.1 \pm 0.5$	<2.6
$B^{+} \rightarrow \eta^{\prime} K^{*+}$	$4.9_{-1.7}^{+1.9} \pm 0.8$	<2.9

Search for $\boldsymbol{B}^{+} \rightarrow \boldsymbol{a}^{+} \boldsymbol{K}^{+0}$

Y	Y_{b}	$\mathcal{B}\left(10^{-6}\right)$	S	$\mathrm{UL}\left(10^{-6}\right)$
61_{-21}^{+23}	34 ± 17	$0.7_{-0.5-1.3}^{+0.5+0.6}$	0.5	1.8

$$
\begin{array}{r}
\mathcal{B}\left(B^{+} \rightarrow a_{1}^{+} K^{* 0}\right) \times \mathcal{B}\left(a_{1}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right) \\
=\left(0.7_{-0.5-1.3}^{+0.5+0.6}\right) \times 10^{-6}
\end{array}
$$

Source of systematic uncertainty	
Additive errors (events)	
PDF parametrization	4
a_{1} meson parametrization	6
ML Fit Bias	17
Non resonant charmless $B \bar{B}$ background	3
$B^{+} \rightarrow a_{2}^{+} K^{* 0}$ charmless background	6
Remaining charmless $B \bar{B}$ background	7
Total additive (events)	22
Multiplicative errors (\%)	
Tracking efficiency	1.2
Determination of the integrated luminosity	1.1
MC statistics (signal efficiency)	0.6
Differences in selection efficiency for a_{1} decay	3.3
Particle identification (PID)	1.4
Event shape restriction $\left(\cos \theta_{\mathrm{T}}\right)$	1.0
Total multiplicative $(\%)$	4.1
Variation on $f_{L}\left[\mathcal{B}\left(10^{-6}\right)\right]$	${ }_{-1.2}^{+0.0}$
Total systematic error $\left[\mathcal{B}\left(10^{-6}\right)\right]$	${ }_{-1.3}^{0.6}$

Inclusive BF of $B^{+} \rightarrow K^{+} \pi^{0} \pi^{0}$

Amplitude analysis of $B^{0} \rightarrow K_{s}{ }^{0} K_{s}{ }^{0} K_{s}{ }^{0}$

$$
\begin{aligned}
\mathcal{A}\left[B^{0}\right. & \left.\rightarrow K_{S}^{0}(1) K_{S}^{0}(2) K_{S}^{0}(3)\right] \\
& =\frac{1^{3 / 2}}{2} \quad\left\{\mathcal{A}_{1}\left[B^{0} \rightarrow \bar{K}^{0}(1) K^{0}(2) K^{0}(3)\right]\right. \\
& +\mathcal{A}_{2}\left[B^{0} \rightarrow \bar{K}^{0}(2) K^{0}(3) K^{0}(1)\right] \\
& \left.+\mathcal{A}_{3}\left[B^{0} \rightarrow \bar{K}^{0}(3) K^{0}(1) K^{0}(2)\right]\right\},
\end{aligned}
$$

$d \Gamma\left(B^{0} \rightarrow K_{S}^{0} K_{S}^{0} K_{S}^{0}\right)=\frac{1}{(2 \pi)^{3}} \frac{|\mathcal{A}|^{2}}{32 m_{B^{0}}^{3}} d s_{\min } d s_{\max }$

Amplitude analysis of $B^{0} \rightarrow K_{s}^{0} K_{s}^{0} K_{s}^{0}$

Amplitude analysis of $B^{0} \rightarrow K_{s}^{0} K_{s}{ }^{0} K_{s}{ }^{0}$

Amplitude analysis of $B^{0} \rightarrow K_{s}{ }^{0} K_{s}{ }^{0} K_{s}{ }^{0}$

Mode	Solution 1	Solution 2
FF $f_{0}(980) K_{S}^{0}$	$0.44_{-0.19}^{+0.20}$	$1.03_{-0.17}^{+0.22}$
Phase [rad] $f_{0}(980) K_{S}^{0}$	0.09 ± 0.16	1.26 ± 0.17
Significance $[\sigma] f_{0}(980) K_{S}^{0}$	3.3	-
FF $f_{0}(1710) K_{S}^{0}$	$0.07_{-0.03}^{+0.07}$	$0.09_{-0.02}^{+0.05}$
Phase [rad] $f_{0}(1710) K_{S}^{0}$	1.11 ± 0.23	0.36 ± 0.20
Significance $[\sigma] f_{0}(1710) K_{S}^{0}$	3.7	-
FF $f_{2}(2010) K_{S}^{0}$	$0.09_{-0.03}^{+0.03}$	0.10 ± 0.02
Phase [rad] $f_{2}(2010) K_{S}^{0}$	2.50 ± 0.20	1.58 ± 0.22
Significance $[\sigma] f_{2}(2010) K_{S}^{0}$	3.3	-
FF $\chi_{c 0} K_{S}^{0}$	$0.07_{-0.02}^{+0.04}$	0.07 ± 0.02
Phase [rad] $\chi_{c 0} K_{S}^{0}$	0.63 ± 0.47	-0.24 ± 0.52
Significance $[\sigma] \chi_{c 0} K_{S}^{0}$	4.2	-
FF NR	$2.15_{-0.37}^{+0.36}$	$1.37_{-0.21}^{+0.26}$
Phase [rad] NR	0.0	0.0
Significance $[\sigma] \mathrm{NR}$	8.2	-
Total FF	$2.84_{-0.66}^{+0.71}$	$2.66_{-0.27}^{+0.35}$

