Study of Charmless Hadronic *B* decays at *BABAR*

Alessandro Gaz University of Colorado

Representing the *BABAR* Collaboration

July 23rd 2010 ICHEP 2010, Paris

Motivations

- Charmless hadronic *B* decays are sensitive probes to investigate potential effects of new physics:
 - shift of time-dependent CP -asymmetries;
 - suppression/enhancement of branching fractions;

→ ...;

- "Polarization puzzle": in several VV decays (such as ϕK^* or ρK^*) the longitudinal polarization fraction f_L is ~0.5, contrary to the prediction of $f_L \sim 0.9$ based on simple helicity arguments. Still to be fully explained;
- We can investigate new/poorly known resonances through the Dalitz Plot analysis of charmless three-body *B* decays;

The measurements I will present today exploit the full BaBar dataset (~465 x $10^6 B\overline{B}$ pairs).

Kinematics of **B** decays

• Fully reconstructed *B* mesons: two variables are commonly used (exploiting the precise knowledge of the beam energy):

• Dominant background: $q\overline{q}$ (q = u, d, s, c). Reduced by means of a Fisher discriminant / Neural Network exploiting event shape variables (*BB* events are spherical, $q\overline{q}$ jet-like)

Two-body Decays

• Search for $B \rightarrow \eta' \rho, \eta' f_{\rho}, \eta' K^*$;

arXiv:1004.0240 [hep-ex] – Accepted by PRD-RC

• Search for $B^+ \rightarrow a_1^+ K^{*0}$;

arXiv:1007.2732 [hep-ex] – Submitted to PRD-RC

Two-body: motivations

- Search for $B \rightarrow \eta' \rho, \eta' f_{\rho}, \eta' K^*$:
 - → Confirm the predicted pattern of interference for $B \rightarrow \eta/\eta' X$ decays;
 - → Discrepancies among theory models in the predicted BF of $B \rightarrow \eta' \rho^+$. Also poor agreement between Belle's result and previous BaBar analysis;

$B^+ \to \eta' \rho^+$	Predicted $\mathcal{B}(10^{-6})$
SCET QCDF pQCD	$\begin{array}{c} 0.4\substack{+3.2\\-0.2}\\ 6.3\substack{+2.8\\-3.3}\\ 8.7\substack{+3.3\\-3.3}\end{array}$

- → We fit simultaneously for three K^* components: $K^*(892)$, $K_2^*(1430)$, and the scalar $K_0^*(1430)$ + non-resonant $K\pi$ (we use the LASS parameterization) ;
- Search for $B^+ \rightarrow a_1^+ K^{*0}$:
 - → Verify and constrain theory models: QCDF predicts a BF ~ 11 x 10⁶, while naïve factorization predicts ~10⁶;
 - Investigate the polarization puzzle.

Search for $B \rightarrow \eta' \rho / \eta' f_{\rho} / \eta' K^*$

- First observation of: $\eta' \rho^+$, $\eta' K_0^* (1430)^0$, $\eta' K_2^* (1430)^+$, $\eta' K_2^* (1430)^0$;
- Evidence of: $\eta' K^*(892)^+$, $\eta' K^*(892)^0$, $\eta' K_0^*(1430)^+$;
- Our result on $\eta' \rho^+$ favors the predictions of pQCD and QCDF, confirmed suppression of $\eta' K^*$ with respect to ηK^* ;
- Enhancement of the tensor component $K_2^*(1430)$ over the vector $K^*(892)$ not anticipated by the theory. This was observed also in ωK^* , but not in ηK^* .

Search for $B^+ \rightarrow a_1^+ K^{*0}$

• Maximum likelihood fit to the variables:

 m_{ES} , ΔE , Fisher, m($\rho\pi$), m($K\pi$), H(a_1), H(K^*)

• No significant signal found, we set the upper limit:

BF(
$$B^+ \rightarrow a_1^+ K^{*0}$$
) x BF($a_1^+ \rightarrow \pi^+ \pi^- \pi^+$)
< (1.8 x 10⁻⁶) (at 90% CL)

- Naïve factorization predictions favored over QCDF;
- Dominant systematic uncertainty from ignorance about f_{L} (nominal fit with $f_{L} = 1$ to get the most conservative upper limit).

Three-body Decays

• Inclusive branching fraction of $B^+ \rightarrow K^+ \pi^0 \pi^0$;

arXiv:1005.3717 [hep-ex] – Presented at FPCP 2010

• Observation of the rare decay $B^0 \rightarrow K_s^0 K \pi$;

arXiv:1003.0640 [hep-ex] – Submitted to PRD-RC

• Amplitude analysis of $B^0 \rightarrow K_s^0 K_s^0 K_s^0$;

Presented at FPCP 2010

Three-body: motivations

- $B^+ \rightarrow K^+ \pi^0 \pi^0$:
 - help solving the " $K\pi$ puzzle" looking at the similar $K^*\pi$;
 - → Investigate the poorly known f_{χ} (1300), seen to decay to $\pi^{+}\pi^{-}$;
- $B^{o} \rightarrow K_{s}^{o} K \pi$:
 - → Decay proceeding through $b \rightarrow u$ tree and $b \rightarrow d$ penguin amplitudes;
 - → Search for an isospin partner of the $f_{\chi}(1500)$ seen decaying to $K^+K^$ in $B^+ \rightarrow K^+K^-\pi^+$, but not in $B^+ \rightarrow K_s^0 K_s^0 \pi^+$;
- $B^{o} \rightarrow K_{s}^{o} K_{s}^{o} K_{s}^{o}$:
 - → First amplitude analysis of this mode;
 - → Investigate the nature of the f_{χ} (1500).

Inclusive BF of $B^+ \rightarrow K^+ \pi^0 \pi^0$

• We measure the branching fraction:

$\mathsf{BF}(B^+ \to K^+ \pi^0 \pi^0 \) = (15.5 \pm 1.1 \pm 1.6) \ge 10^{-6}$

• Dominant systematic uncertainties: π^{o} reconstruction efficiency (6.0%), NN_{out} PDF shape (4.9%), ΔE cut efficiency (4.0%).

Observation of $B^0 \rightarrow K_c^0 K \pi$

 $\mathsf{BF}(B^0\to K_{_S}{}^0K\pi~)=(3.2\,\pm\,0.5\,\pm\,0.3)\times10^{.6}$

 Dominant systematic uncertainties: signal PDF's (5.2%), corrections due to vetoes (4.1%), self-crossfeed fraction (3%).

Fit results:

$$N_{slg} = 262 \pm 47$$

Significance 5.2 σ

 $(6.0\sigma \text{ stat only})$

the $f_{y}(1500)$

No evidence of an isospin partner of

Amplitude analysis of $B^0 \rightarrow K_s^0 K_s^0 K_s^0$

• Three identical particles in the final state: the analysis can be done only in $1/6^{th}$ of the Dalitz Plot. We use the variables s_{max} and s_{mln} , and we move to the Squared Dalitz Plot formalism:

Standard DPSquared DP $s_{min} = \min(s_{12}, s_{23}, s_{13})$ $s_{min} \rightarrow \cos \theta_{min} \equiv h_{min}$ $s_{max} = \max(s_{12}, s_{23}, s_{13})$ $s_{max} \rightarrow \cos \theta_{max} \equiv h_{max}$ $s_{xy} = m_{xy}^2$ $ds_{min}ds_{max} \rightarrow |\det J|dh_{min}dh_{max}$

• The isobar model is used to describe the DP structure:

$$\mathcal{A}(s_{\min}, s_{\max}) = \sum_{j=1}^{N} c_j F_j(s_{\min}, s_{\max})$$

ICHEP 2010

A. Gaz – University of Colorado

Amplitude analysis of $B^0 \rightarrow K_s^0 K_s^0 K_s^0$

- 200 ± 15 signal events (305 ± 18 $q\bar{q}$);
- We start with a baseline model with f_o (980), χ_{co} , and non-resonant. We add a resonance and scan the likelihood varying its mass and width;

- We only find significant contributions from f_0 (1710) and f_2 (2010), no evidence of the f_{χ} (1500);
- We measure the inclusive branching fraction:

 $BF(B^0 \rightarrow K_s K_s K_s) = (6.5 \pm 0.5 \pm 0.4) \times 10^{-6}$

ICHEP 2010

Conclusions

Search for $B \rightarrow \eta' \rho, \eta' f_0, \eta' K^*$	Four first observations (>5 σ) and evidence (>3 σ) for three more modes. Unexpected enhancement of the tensor component over the vector in $\eta' K^*$
Search for $B^+ \rightarrow a_1^+ K^{*0}$	No signal found: upper limit sets useful constraints for theoretical models
Inclusive BF of $B \rightarrow K^+ \pi^0 \pi^0$	First measurement of the inclusive mode, next we will measure the $K^*\pi$ branching fraction
Measurement of $B^{0} \rightarrow K_{S}^{0} K \pi$	No evidence of an isospin partner of the f_{χ} (1500)
Amplitude analysis of $B^0 \to K_s K_s K_s$	First amplitude analysis of this mode, no evidence of the f_{χ} (1500) decaying to $K_{S}K_{S}$

• Two years after the end of the data taking, BaBar continues to exploit its rich dataset, more results will be coming...

Backup Slides

The PEP-II Collider

The BABAR detector

Search for $B \rightarrow \eta' \rho / \eta' f_{\rho} / \eta' K^*$

Mode	Y	Y_0	ϵ	$\Pi \mathcal{B}_i$	\overline{S}	B	BU.L.	\mathcal{A}_{ch}
	(events)	(events)	(%)	$(\%)^{1121}$	(σ)	(10^{-6})	(10^{-6})	• ten
$\overline{\eta' ho^0}$	37 ± 15	9 ± 5	23.4	17.5	2.0	$1.5\pm0.8\pm0.3$	2.8	_
$\eta' f_0$	8±8	4 ± 2	25.9	17.5	0.5	$0.2^{+0.4}_{-0.3}\pm0.1$	0.9	_
$\eta' ho^+$	128 ± 22	15 ± 8	14.3	17.5	5.8	$9.7^{+1.9}_{-1.8}\pm1.1$	_	$0.26 \pm 0.17 \pm 0.02$
$\eta' K^*(892)^0 \ \eta'_{\eta\pi\pi} K^*(892)^0 \ \eta'_{ ho\gamma} K^*(892)^0$	$28 \pm 10 \\ 61 \pm 18$	$\begin{array}{c} 4\pm2\\ 9\pm5\end{array}$	18.9 13.3	$\begin{array}{c} 11.7\\ 19.6 \end{array}$	$4.0 \\ 2.7 \\ 3.1$	$\begin{array}{c} 3.1^{+0.9}_{-0.8}\pm0.3\\ 2.4^{+1.1}_{-0.9}\pm0.3\\ 4.3^{+1.6}_{-1.5}\pm0.5\end{array}$	4.4	$\begin{array}{c} 0.02 \pm 0.23 \pm 0.02 \\ -0.04 \pm 0.35 \\ 0.06 \pm 0.29 \end{array}$
$ \begin{array}{c} \eta' K^{*}(892)^{+} \\ \eta'_{\eta\pi\pi} K^{*}(892)^{+}_{K^{+}\pi^{0}} \\ \eta'_{\rho\gamma} K^{*}(892)^{+}_{K^{+}\pi^{0}} \\ \eta'_{\eta\pi\pi} K^{*}(892)^{+}_{K^{0}_{S}\pi^{+}} \\ \eta'_{\rho\gamma} K^{*}(892)^{+}_{K^{0}_{S}\pi^{+}} \end{array} $	14 ± 8 26 ± 19 23 ± 10 34 ± 15	$2\pm 1 \\ 6\pm 3 \\ 3\pm 2 \\ 10\pm 5$	$11.5 \\ 9.7 \\ 19.1 \\ 16.2$	5.8 9.8 4.0 6.8	$3.8 \\ 2.0 \\ 1.1 \\ 2.6 \\ 1.6$	$\begin{array}{c} 4.8^{+1.6}_{-1.4}\pm0.8\\ 3.9^{+3.1}_{-2.1}\pm0.5\\ 4.7^{+4.5}_{-4.1}\pm1.3\\ 5.5^{+2.9}_{-2.4}\pm0.7\\ 4.8^{+3.2}_{-2.8}\pm1.2 \end{array}$	7.2	$\begin{array}{c} -0.26 \pm 0.27 \pm 0.02 \\ -1.00 \pm 0.78 \\ 0.05 \pm 0.66 \\ -0.47 \pm 0.37 \\ 0.24 \pm 0.44 \end{array}$
$ \begin{array}{c} \eta'(K\pi)_{0}^{*0} \\ \eta'_{\eta\pi\pi}(K\pi)_{0}^{*0} \\ \eta'_{\rho\gamma}(K\pi)_{0}^{*0} \end{array} $	106 ± 21 115 ± 36	$\begin{array}{c} 12\pm 6\\ 21\pm 11 \end{array}$	$20.2 \\ 17.6$	$\begin{array}{c} 11.7\\ 19.6 \end{array}$	$5.6 \\ 4.9 \\ 2.7$	$\begin{array}{c} 7.4^{+1.5}_{-1.4} \pm 0.6 \\ 8.5^{+2.0}_{-1.9} \pm 1.0 \\ 5.8^{+2.3}_{-2.2} \pm 1.0 \end{array}$	_	$\begin{array}{c} -0.19 \pm 0.17 \pm 0.02 \\ -0.39 \pm 0.20 \\ 0.32 \pm 0.31 \end{array}$
$ \begin{array}{c} \eta'(K\pi)_{0}^{*+} \\ \eta'_{\eta\pi\pi}(K^{+}\pi^{0})_{0}^{*+} \\ \eta'_{\rho\gamma}(K^{+}\pi^{0})_{0}^{*+} \\ \eta'_{\eta\pi\pi}(K_{S}^{0}\pi^{+})_{0}^{*+} \\ \eta'_{\rho\gamma}(K_{S}^{0}\pi^{+})_{0}^{*+} \end{array} $	36 ± 15 185 ± 51 18 ± 12 -29 ± 22	2 ± 1 31 ± 15 1 ± 1 -8 ± 4	$13.9 \\ 12.8 \\ 18.6 \\ 17.4$	5.8 9.8 4.0 6.8	2.9 2.4 2.8 1.6 -	$\begin{array}{c} 6.0^{+2.2}_{-2.0}\pm0.9\\ 8.8^{+4.2}_{-3.8}\pm1.3\\ 26.4^{+9.0}_{-8.5}\pm5.9\\ 5.1^{+3.5}_{-3.2}\pm0.9\\ -3.8^{+4.0}_{-3.9}\pm1.5 \end{array}$	9.3	$\begin{array}{c} 0.06 \pm 0.20 \pm 0.02 \\ 0.00 \pm 0.41 \\ 0.23 \pm 0.27 \\ 0.13 \pm 0.59 \\ -0.40 \pm 1.48 \end{array}$
$\eta' K_2^* (1430)^0 \ \eta'_{\eta\pi\pi} K_2^* (1430)^0 \ \eta'_{ ho\gamma} K_2^* (1430)^0$	42 ± 13 125 ± 26	$\begin{array}{c} 2\pm 1\\ 20\pm 10 \end{array}$	$\begin{array}{c} 15.1 \\ 10.6 \end{array}$	5.8 9.8	$5.3 \\ 3.7 \\ 4.1$	$\begin{array}{c} 13.7^{+3.0}_{-2.9}\pm1.2\\ 9.8^{+3.4}_{-3.2}\pm0.9\\ 21.7^{+5.4}_{-5.3}\pm3.0 \end{array}$	_	$\begin{array}{c} 0.14 \pm 0.18 \pm 0.02 \\ 0.58 \pm 0.32 \\ -0.05 \pm 0.20 \end{array}$
$ \begin{array}{c} \eta' K_{2}^{*}(1430)^{+} \\ \eta'_{\eta\pi\pi} K_{2}^{*}(1430)^{+}_{K^{+}\pi^{0}} \\ \eta'_{\rho\gamma} K_{2}^{*}(1430)^{+}_{K^{+}\pi^{0}} \\ \eta'_{\eta\pi\pi} K_{2}^{*}(1430)^{+}_{K^{0}_{S}\pi^{+}} \\ \eta'_{\rho\gamma} K_{2}^{*}(1430)^{+}_{K^{0}_{S}\pi^{+}} \end{array} $	42 ± 11 115 ±28 42 ± 10 62 ± 16	5 ± 3 20 ± 10 5 ± 2 14 ± 7	9.9 8.5 15.3 12.4	2.9 4.9 2.0 3.4	$7.2 \\ 3.5 \\ 2.9 \\ 4.5 \\ 3.0$	$28.0^{+4.6}_{-4.3} \pm 2.6$ $27.1^{+8.8}_{-8.1} \pm 4.5$ $46.2^{+14.4}_{-13.8} \pm 12.2$ $25.9^{+7.8}_{-7.1} \pm 2.7$ $24.1^{+8.7}_{-8.0} \pm 4.1$	_	$0.15 \pm 0.13 \pm 0.02 \\ 0.29 \pm 0.25 \\ -0.33 \pm 0.24 \\ 0.44 \pm 0.23 \\ 0.22 \pm 0.25$

ICHEP 2010

A. Gaz – University of Colorado

Search for $B \rightarrow \eta' \rho / \eta' f_{\rho} / \eta' K^{*}$

Previous results (x 10⁻⁶)

Search for $B^+ \rightarrow a_1^+ K^{*0}$

Y	Y_b	$\mathcal{B}(10^{-6})$	S	UL (10^{-6})
61^{+23}_{-21}	34 ± 17	$0.7\substack{+0.5+0.6\\-0.5-1.3}$	0.5	1.8

$$\mathcal{B}(B^+ \to a_1^+ K^{*0}) \times \mathcal{B}(a_1^+ \to \pi^+ \pi^- \pi^+) = (0.7^{+0.5}_{-0.5} + 0.6)_{-1.3} \times 10^{-6}$$

Source of systematic uncertainty	
Additive errors (events)	
PDF parametrization	4
a_1 meson parametrization	6
ML Fit Bias	17
Non resonant charmless $B\overline{B}$ background	3
$B^+ \to a_2^+ K^{*0}$ charmless background	6
Remaining charmless $B\overline{B}$ background	7
Total additive (events)	22
Multiplicative errors (%)	
Tracking efficiency	1.2
Determination of the integrated luminosity	1.1
MC statistics (signal efficiency)	0.6
Differences in selection efficiency for a_1 decay	3.3
Particle identification (PID)	1.4
Event shape restriction $(\cos \theta_{\rm T})$	1.0
Total multiplicative $(\%)$	4.1
Variation on $f_L \left[\mathcal{B}(10^{-6}) \right]$	$^{+0.0}_{-1.2}$
Total systematic error $[\mathcal{B}(10^{-6})]$	$+0.6 \\ -1.3$

Inclusive BF of $B^+ \rightarrow K^+ \pi^0 \pi^0$

$$\mathcal{P}_j^i \equiv \mathcal{P}_j(m_{\rm ES}{}^i) \mathcal{P}_j({\rm NN_{out}}^i)$$

$$\mathcal{P}_{\text{sig}}^{i} \equiv (1 - f_{\text{SCF}}) \mathcal{P}_{\text{CR}}(m_{\text{ES}}{}^{i}) \mathcal{P}_{\text{CR}}(\text{NN}_{\text{out}}{}^{i}) + f_{\text{SCF}} \mathcal{P}_{\text{SCF}}(m_{\text{ES}}{}^{i}) \mathcal{P}_{\text{SCF}}(\text{NN}_{\text{out}}{}^{i}),$$

Source	Uncertainty
$CR signal m_{ES} PDF$	0.8%
CR signal and $B\overline{B}$ background NN _{out} PDFs	4.9%
SCF signal $m_{\rm ES}$ PDF	1.7~%
$SCF \text{ signal } NN_{out} PDF$	0.7%
SCF fraction	2.5%
$B\overline{B}$ background PDFs (MC statistics)	0.8%
$B\overline{B}$ background $m_{\rm ES}$ PDFs	1.6%
$B\overline{B}$ background yields	1.4%
Fit bias	1.8%
Subtotal	6.5%
Tracking efficiency	0.4%
Particle identification	1.0%
Neutral pion efficiency	6.0%
ΔE cut efficiency	4.0%
NN _{out} cut efficiency	3.0%
K^0_S veto	2.0%
$N_{B\overline{B}}$	0.6%
Total	10.4%

Amplitude analysis of $B^0 \rightarrow K_s^0 K_s^0 K_s^0$

$$\mathcal{A}[B^{0} \rightarrow K_{S}^{0}(1)K_{S}^{0}(2)K_{S}^{0}(3)]$$

$$= \frac{1}{2}^{3/2} \{\mathcal{A}_{1}[B^{0} \rightarrow \overline{K}^{0}(1)K^{0}(2)K^{0}(3)]$$

$$+ \mathcal{A}_{2}[B^{0} \rightarrow \overline{K}^{0}(2)K^{0}(3)K^{0}(1)]$$

$$+ \mathcal{A}_{3}[B^{0} \rightarrow \overline{K}^{0}(3)K^{0}(1)K^{0}(2)]\},$$

$$\mathcal{B}_{BBar}$$
preliminary
$$\int_{1}^{0} \frac{1}{2} \int_{1}^{0} \frac{1}{2} \int_{1}$$

$$d\Gamma(B^0 \to K^0_S K^0_S K^0_S) = \frac{1}{(2\pi)^3} \frac{|\mathcal{A}|^2}{32m^3_{B^0}} ds_{\min} ds_{\max}$$

Amplitude analysis of $B^0 \rightarrow K_c^0 K_c^0 K_c^0$

Amplitude analysis of $B^0 \rightarrow K_s^0 K_s^0 K_s^0$

A. Gaz – University of Colorado

ICHEP 2010

Amplitude analysis of $B^0 \rightarrow K_s^0 K_s^0 K_s^0$

Mode	Solution 1	Solution 2
FF $f_0(980)K_S^0$	$0.44\substack{+0.20\\-0.19}$	$1.03\substack{+0.22\\-0.17}$
Phase [rad] $f_0(980)K_S^0$	0.09 ± 0.16	1.26 ± 0.17
Significance $[\sigma]f_0(980)K_S^0$	3.3	-
FF $f_0(1710)K_S^0$	$0.07\substack{+0.07 \\ -0.03}$	$0.09\substack{+0.05\\-0.02}$
Phase [rad] $f_0(1710)K_S^0$	1.11 ± 0.23	0.36 ± 0.20
Significance $[\sigma]f_0(1710)K_S^0$	3.7	-
FF $f_2(2010)K_S^0$	$0.09\substack{+0.03\\-0.03}$	0.10 ± 0.02
Phase [rad] $f_2(2010)K_S^0$	2.50 ± 0.20	1.58 ± 0.22
Significance $[\sigma]f_2(2010)K_S^0$	3.3	-
${ m FF}\chi_{c0}K^0_S$	$0.07\substack{+0.04 \\ -0.02}$	0.07 ± 0.02
Phase [rad] $\chi_{c0}K_S^0$	0.63 ± 0.47	-0.24 ± 0.52
Significance $[\sigma]\chi_{c0}K_S^0$	4.2	-
FF NR	$2.15_{-0.37}^{+0.36}$	$1.37\substack{+0.26 \\ -0.21}$
Phase [rad] NR	0.0	0.0
Significance $[\sigma]$ NR	8.2	-
Total FF	$2.84^{+0.71}_{-0.66}$	$2.66^{+0.35}_{-0.27}$

A. Gaz – University of Colorado