ICHEP

CKM angle γ

- Apex of the CKM Unitary Triangle (UT) over constrained

CP violation measurements give angles
Semileptonic decay rates (and other methods) give sides

- Precise measurement of SM parameters
- Search for NP in discrepancies of redundant measurements
- Still have some work to do on γ : less precisely known UT angle (most difficult to measure)
See also UTfit analysis at
http://www.utfit.org/

CKM angle γ

- Apex of the CKM Unitary Triangle (UT) over constrained

CP violation measurements give angles
Semileptonic decay rates (and other methods) give sides

- Precise measurement of SM parameters
- Search for NP in discrepancies of redundant measurements
- Still have some work to do on γ : less precisely known UT angle (most difficult to measure)
- Important to measure γ since, together with $\left|\mathrm{V}_{\mathrm{ub}}\right|$, selects $\rho-\eta$ value independently of most types of NP
\triangle SM candle type of measurement
- The constraint on γ come from tree-level $B \rightarrow D K$ decays

γ from $B \rightarrow D K$ decays

γ from $B \rightarrow D K$ decays

γ from $B \rightarrow D K$ decays

γ from $\mathrm{B} \rightarrow \mathrm{DK}$ decays Dalitz plot method

γ from $B \rightarrow$ DK decays Dalitz plot method

Decay amplitude

$$
A\left(B^{-} \rightarrow\left[K_{S} \pi^{+} \pi^{-}\right] K^{-}\right) \propto
$$

$$
\begin{aligned}
& \text { Large interference in some } \\
& \text { regions of the Dalitz plot, e.g. } \\
& \mathbf{D}^{0} \rightarrow \mathbf{K}_{\mathrm{s}} \rho \\
& \mathbf{D}^{0} \rightarrow \mathbf{K}^{*} \pi^{+} \mathrm{vs} \mathrm{D}^{0} \rightarrow \mathbf{K}^{+} \pi^{-}
\end{aligned} \quad \begin{aligned}
& \quad\left(B^{+} \rightarrow\left[K_{s} \pi^{+} \pi^{-}\right] K^{+}\right) \propto
\end{aligned}
$$

Experimental techniques

- Exclusive reconstruction of multiple B decays:

$$
\mathbf{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}, \mathbf{B}^{ \pm} \rightarrow \mathbf{D}^{*}\left[\mathrm{D} \pi^{0}\right] \mathrm{K}^{ \pm}, \mathrm{B}^{ \pm} \rightarrow \mathbf{D}^{*}[\mathbf{D} \gamma] \mathbf{K}^{ \pm}, \mathbf{B}^{ \pm} \rightarrow \mathrm{DK}^{\star \pm}
$$

- Exploit kinematic constraints from beam energies.

$$
\mathrm{m}_{\mathrm{ES}}=\sqrt{\mathrm{E}^{* 2} 2_{\text {beam }}-\left|\mathrm{p}_{\mathrm{B}}^{*}\right|^{2}} \quad \Delta \mathrm{E}=\mathrm{E}_{\mathrm{B}}^{*}-\mathrm{E}_{\text {beam }}^{*}
$$

- The main source of background : $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{qq}$, with $\mathrm{q}=\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}$
- Event shape variables combined into a linear (Fisher) or non linear (Neural Network) combination. Tagging information sometimes used

- Signal is separated from background through unbinned maximum likelihood fits to $B^{ \pm} \rightarrow D^{(*)} K^{(*) \pm}$ data using $\mathrm{m}_{\mathrm{ES}}, \Delta \mathrm{E}$ and Fisher (or Neural Network) discriminant
${ }^{\bullet}$ Use large $B^{ \pm} \rightarrow D^{(*)} \pi^{ \pm}$data control samples ($r_{B} \sim 0.01, x 10$ smaller than for $D K$)

γ from D Dalitz plot method

- BaBar analysis based on complete data sample ($468 \mathrm{M} \mathrm{B} \mathrm{\bar{B}}$ pairs)
arXiv:1005.1096 Sub. to Phys. Rev. Lett.
${ }^{\bullet}$ Reconstruct $\mathbf{B}^{ \pm} \rightarrow \mathbf{D K} K^{ \pm}, \mathbf{B}^{ \pm} \rightarrow \mathbf{D}^{*}\left[\mathbf{D} \pi^{0}\right] \mathbf{K}^{ \pm}, \mathbf{B}^{ \pm} \rightarrow \mathbf{D}^{*}[\mathbf{D} \boldsymbol{\gamma}] \mathbf{K}^{ \pm}$, and $\mathbf{B}^{ \pm} \rightarrow \mathbf{D K} \mathbf{K}^{* \pm}$ final states with
$\mathbf{D}=\mathbf{K}_{\mathbf{S}} \boldsymbol{T}^{+} \boldsymbol{\Pi} \mathbf{K} \mathbf{K}_{\mathbf{s}} \mathbf{K}^{+} \mathbf{K}$ (eight different final states for each B charge)
Only BaBar

- Efficiencies improved substantially (20% to 40% relative) with respect to previous BaBar measurement ($383 \mathrm{M} \mathrm{B} \overline{\mathrm{B}}$) PRD78, 034023 (2008)
- Reprocessed data set with improved track reconstruction
- Improved particle identification
- Revised K_{S} selection criteria: negligible background from $D \rightarrow \pi^{+} \pi^{-} h^{+} h^{-}$and $B \rightarrow D a_{1}(1260)$

$\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{-} ; \mathrm{K}_{\mathrm{s}} \mathrm{K}+\mathrm{K}-$ amplitude analysis

arXiv:1004.5053. Accepted by Phys. Rev. Lett.

- Extract D^{0} amplitude from an independent analysis of flavor tagged D^{0} mesons ($D^{*+} \rightarrow D^{0} T^{+}$)
- Experimental analysis using complete data sample benefits from synergy with D-mixing analysis Σ Mめdel determined without (reference) and witno-mixing
- Fit for amplitudes relative to CP eigenstates $\left[K_{s} \rho(770)\right.$ and $\left.K_{s} a_{0}(980)\right]$ and assume no direct CPV

γ from D Dalitz plot method

- CP violation parameters are extracted from simultaneous unbinned maximum likelihood fit to $\mathrm{B}^{ \pm}$ $\rightarrow \mathrm{D}^{(*)} \mathrm{K}^{(*) \pm}$ data using $\mathrm{m}_{\mathrm{ES}}, \Delta \mathrm{E}$, Fisher and the Dalitz plot distributions ($\mathrm{s}^{+}, \mathrm{s}-$)

$$
x_{\mp}=r_{B} \cos \left(\delta_{B} \mp \gamma\right)
$$

$$
y_{\mp}=r_{B} \sin \left(\delta_{B} \mp \gamma\right)
$$

$$
-\gamma
$$

s. $\left(\mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$

Differences between B^{+}and B^{-}gives information on γ

γ from D Dalitz plot method

- Use frequentist method to obtain the (common) weak phase γ and the hadronic parameters r_{B}, δ_{B} (different for each B decay channel) from 12 (x, y) observables

Our previous result:
$\gamma\left(\bmod 180^{\circ}\right)=(76 \pm 22 \pm 5 \pm 5)^{\circ}$
[Error on γ scales roughly as $1 / r_{B}$]

- Smaller stat error due to additional data + improved reconstruction + slightly higher $r_{B}(D K)$
- Model error benefited from overlap with D-mixing analysis (e.g. reduction of experimental uncertainties inherent to the model uncertainty)
$\gamma\left(\bmod 180^{\circ}\right)=\left(78.4_{-11.6}^{+10.8} \pm 3.6 \pm 8.9\right)^{\circ} \quad r_{B}(D K)=0.160_{-0.038}^{+0.040}$

γ from ADS method

- Update with final data sample (468 M B \bar{B} pairs). Previous analysis used 232 M $B \bar{B}$ pairs

PRD72, 032004 (2005)

- Reconstruct $\mathbf{B}^{ \pm} \rightarrow \mathbf{D K} \mathbf{K}^{ \pm}, \mathbf{B}^{ \pm} \rightarrow \mathbf{D}^{*}\left[\mathbf{D} \pi^{0}\right] \mathbf{K}^{ \pm}$, and $\mathbf{B}^{ \pm} \rightarrow \mathbf{D}^{*}[\mathbf{D} \gamma] \mathbf{K}^{ \pm}$, with
- $\mathrm{D} \rightarrow \mathrm{K}^{ \pm} \mathrm{T}^{+}$("same sign")
- $\mathrm{D} \rightarrow \mathrm{K}^{\dagger} \pi^{ \pm}$("opposite sign")

"Maximizes" CP asymmetry since "equalizes" the magnitudes of the interfering amplitudes

First sign of an ADS signal in

$$
\begin{gathered}
\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}(2.1 \sigma) \\
\quad \text { and } \\
\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{ \pm} \mathrm{K}^{ \pm}(2.2 \sigma)
\end{gathered}
$$

γ from ADS method

- Fit directly observables $R_{A D S}$ and $B^{ \pm}$"same sign" yields $B^{ \pm} \rightarrow\left[K^{ \pm} \pi^{\mp}\right]_{D} K^{ \pm}$to reconstruct the ADS asymmetry

$$
\begin{aligned}
& R_{A D S}=\frac{1}{2}\left(R^{+}+R^{-}\right)=r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} \cos \left(\delta_{B}+\delta_{D}\right) \cos \gamma \\
& A_{A D S}=\frac{R^{-}-R^{+}}{R^{-}+R^{+}}=2\left(r_{B} \eta_{D} \sin \left(\delta_{B}+\delta_{D}\right) \sin \gamma / R_{A D S}\right.
\end{aligned}
$$

$$
R^{ \pm} \frac{\Gamma\left(B^{ \pm} \rightarrow\left[K^{\mp} \pi^{ \pm}\right]_{D} K^{ \pm}\right)}{\Gamma\left(B^{ \pm} \rightarrow\left[K^{ \pm} \pi^{\mp}\right]_{D} K^{ \pm}\right)}
$$

$$
\begin{aligned}
& R_{A D S}(D K)=0.011 \pm 0.006 \pm 0.002 \\
& R_{A D S}^{*}\left(\left[D \pi^{0}\right] K\right)=0.018 \pm 0.009 \pm 0.004 \\
& R_{A D S}^{*}([D \gamma] K)=0.013 \pm 0.014 \pm 0.008
\end{aligned}
$$

$$
\begin{aligned}
& A_{A D S}(D K)=-0.86 \pm 0.47_{-0.16}^{+0.12} \\
& A_{A D S}^{*}\left(\left[D \pi^{0}\right] K\right)=0.77 \pm 0.35 \pm 0.12 \\
& A_{A D S}^{*}([D \gamma] K)=0.36 \pm 0.94_{-0.41}^{+0.25}
\end{aligned}
$$

γ from ADS method

- Use frequentist interpretation (similar to Dalitz plot method) to obtain weak phase γ and hadronic parameters $\mathrm{r}_{\mathrm{B}}, \delta_{\mathrm{B}}$ from $\mathrm{R}_{\text {ADS }}{ }^{\left({ }^{*}\right)}$ and $\mathrm{A}_{\mathrm{ADS}}{ }^{\left({ }^{*}\right)}$ observables

$$
\begin{aligned}
& \text { Inputs: } r_{D}=\frac{\left|A\left(\bar{D}^{0} \rightarrow K^{-} \Pi^{+}\right)\right|}{\left|A\left(D^{0} \rightarrow K^{-} \Pi^{+}\right)\right|} \text {(HFAG) } \\
& \delta_{D}=\arg \left[\frac{A\left(\bar{D}^{0} \rightarrow K^{-} \Pi^{+}\right)}{A\left(D^{0} \rightarrow K^{-} \Pi^{+}\right)}\right](\text {CLEOc })
\end{aligned}
$$

$$
\begin{gathered}
r_{D}=(5.78 \pm 0.08) \% \quad \delta_{D}=\left(201.9_{-12.4}^{+11.4}\right)^{\circ} \\
(H F A G, C L E O C)
\end{gathered}
$$

BaBar Dalitz plot method

γ from GLW method

- Update with final data sample ($468 \mathrm{M} \mathrm{B} \overline{\mathrm{B}}$ pairs). Previous analysis used $383 \mathrm{M} \mathrm{B} \overline{\mathrm{B}}$ pairs

PRD77, 111102 (2008)
${ }^{\bullet}$ Reconstruct $\mathbf{B}^{ \pm} \rightarrow \mathbf{D K} \mathbf{K}^{ \pm}$final states with $\mathbf{D} \rightarrow \mathbf{K} \mathbf{+} \mathbf{K}-\boldsymbol{\pi}^{+} \mathbf{\pi}^{-}\left(\mathbf{C P}\right.$ even) and $\mathbf{D} \rightarrow \mathbf{K}_{\mathbf{s}} \pi^{0}, \mathbf{K}_{\mathbf{s}} \omega, \mathbf{K}_{\mathbf{s}} \phi(C P$ odd) (five different final states for each B charge)

$$
\mathrm{B}^{-} \rightarrow \mathrm{DK}^{-}
$$

All components

Continuum $+B \bar{B} B G$

- Efficiencies improved substantially (40% to 60% relative) with respect to previous measurement
- Reprocessed data set with improved track reconstruction
- Improved particle identification
- Introduce Fisher discriminant in the fit rather than apply cut on event shape variables

γ from GLW method

- Extract signal yields fitting directly to observables $R^{ \pm}{ }^{ \pm / \pi} R_{K / \pi}$ and $A_{C P \pm}$

$$
\begin{array}{lc}
R_{K / \pi}^{ \pm} & =\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm} \pi^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} \pi^{+}\right)} \\
A_{C P \pm} & =\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)-\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}
\end{array} \quad R_{K / \pi}=\frac{\Gamma\left(B^{-} \rightarrow D^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D^{0} \pi^{-}\right)+\Gamma\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right)}
$$

3.6σ significance of CPV in $\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$from $\mathrm{A}_{\mathrm{CP}+}$

$$
\begin{aligned}
& A_{C P_{+}}=0.25 \pm 0.06 \pm 0.02 \\
& A_{C P-}=0.09 \pm 0.07 \pm 0.02 \\
& R_{C P_{+}}=1.18 \pm 0.09 \pm 0.05 \\
& R_{C P_{-}}=1.07 \pm 0.08 \pm 0.04
\end{aligned}
$$

γ from GLW method

- Extract signal yields fitting directly to observables $R^{N^{ \pm} / \pi} R_{K / \pi}$, and $A_{C P t}$

$$
\begin{aligned}
& R_{R_{K / \pi}^{ \pm}}=\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm} \pi^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} \pi^{+}\right)} \quad R_{K / \pi}=\frac{\Gamma\left(B^{-} \rightarrow D^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D^{0} \pi^{-}\right)+\Gamma\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right)} \\
& A_{C P \pm}^{A_{C P}}=\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)-\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}
\end{aligned}
$$

3.6σ significance of CPV in $\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$from $\mathrm{A}_{\mathrm{CP}+}$

$$
\begin{aligned}
& A_{C P_{+}}=0.25 \pm 0.06 \pm 0.02 \\
& R_{\text {CP- }}=1.07 \pm 0.08 \pm 0.04
\end{aligned}
$$

Consistent with and of similar precision to Dalitz results

$$
\begin{array}{r}
x_{+}=-0.103 \pm 0.037 \pm 0.006 \pm 0.007 \\
x_{-}=+0.060 \pm 0.039 \pm 0.007 \pm 0.006 \\
\text { [Dalitz results] }
\end{array}
$$

γ from GLW method

- Extract signal yields fitting directly to observables $R^{ \pm} \mathrm{K}^{\prime} \pi R_{\mathrm{K} / \pi}$ and $\mathrm{A}_{\mathrm{CP} \pm}$

$$
\begin{aligned}
& R_{R_{K / \pi}^{ \pm}}=\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm} \pi^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} \pi^{+}\right)} \quad R_{K / \pi}=\frac{\Gamma\left(B^{-} \rightarrow D^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D^{0} \pi^{-}\right)+\Gamma\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right)} \\
& A_{C P \pm}^{A_{C P}}=\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)-\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}
\end{aligned}
$$

3.6σ significance of CPV in $\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$from $\mathrm{A}_{\mathrm{CP}+}$

$$
\begin{aligned}
& A_{C P_{+}}=0.25 \pm 0.06 \pm 0.02 \\
& A_{C P_{-}-}=0.09 \pm 0.07 \pm 0.02 \quad \Longrightarrow \\
& R_{C P_{+}}=1.18 \pm 0.09 \pm 0.05 \\
& R_{C D}=1.07 \pm 0.08 \pm 0.04
\end{aligned} \quad x_{ \pm}=\frac{1}{4}\left[R_{C P_{+}}\left(1 \mp A_{\left.C P_{+}\right)}\right)-R_{C P-}\left(1 \mp A_{C P-}\right)\right]
$$

$$
\begin{align*}
& x_{-}-x_{+}(\text {Dalitz })=0.163 \pm 0.055 \\
& x_{-}-x_{+}(\text {GLW })=0.189 \pm 0.062
\end{align*}
$$

γ from GLW method

- Extract signal yields fitting directly to observables $R^{ \pm} \mathrm{K}^{\prime} \pi R_{\mathrm{K} / \pi}$ and $\mathrm{A}_{\mathrm{CP} \pm}$

$$
\begin{aligned}
& R_{R_{K / \pi}^{ \pm}}=\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm} \pi^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} \pi^{+}\right)} \\
& A_{C P \pm \pm}=\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)-\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}
\end{aligned} \quad \frac{\Gamma\left(B^{-} \rightarrow D^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D^{0} \pi^{-}\right)+\Gamma\left(B^{+} \rightarrow \bar{D}^{0} \pi^{+}\right)}
$$

$$
3.6 \sigma \text { significance of } \mathrm{CPV} \text { in } \mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm} \text {from } \mathrm{A}_{\mathrm{CP}+} \lambda^{0.2} \text {. Dalitz+GLW }
$$

$$
\begin{array}{ll}
A_{C P_{+}}=0.25 \pm 0.06 \pm 0.02 & \\
A_{C P-}=0.09 \pm 0.07 \pm 0.02 & \\
R_{C P+}=1.18 \pm 0.09 \pm 0.05 & x_{ \pm}=\frac{1}{4}\left[R_{C P+}\left(1 \mp A_{C P+}\right)-R_{C P-}\left(1 \mp A_{C P-}\right)\right] \\
R_{C P-}=1.07 \pm 0.08 \pm 0.04 &
\end{array}
$$

4.4σ significance of CPV in $\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$

$$
x_{-}-x_{+}(\text {Dalitz }+ \text { GLW })=0.175 \pm 0.040
$$

γ from GLW method

- Use frequentist interpretation (similar to Dalitz plot method) to obtain weak phase γ and hadronic parameters $\mathrm{r}_{\mathrm{B}}, \delta_{\mathrm{B}}$ from $\mathrm{R}_{\mathrm{CP} \pm}$ and $\mathrm{A}_{\mathrm{CP} \pm}$ observables

$$
R_{C P \pm}=1+\underset{\text { Weak sensitivity to } \mathrm{r}_{\mathrm{B}}^{2}}{r_{B}^{2}+2 r_{B} \cos \delta_{B} \cos \gamma} \quad A_{C P \pm}=\frac{ \pm 2 r_{B} \sin \delta_{B} \sin \gamma}{1+r_{B}^{2} \pm 2 r_{B} \cos \delta_{B} \cos \gamma}
$$

BaBar Dalitz plot method

Summary and outlook

- Recent progress on γ, the hardest UT angle to measure
- BaBar Dalitz plot method approach drives the measurement and benefited from synergy with Dmixing analysis (e.g. reduction of experimental uncertainties inherent to the model uncertainty) (see Matt Bellis talk later in this session)
- First sign of an ADS signal in $\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$and

$$
\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{*} \mathrm{~K}^{ \pm}
$$

- Compelling evidence of direct CPV in
$\mathrm{B}^{ \pm} \rightarrow \mathrm{D}\left(^{*}\right) \mathrm{K}^{(*) \pm}$ decays

Summary and outlook

$x_{-}-x_{+}($Dalitz + GLW $)=0.175 \pm 0.040$
4.4σ significance of CPV in $\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$only, Dalitz+GLW combined

Summary and outlook

Experiments that can also give results in near future

- Recent progress on γ, the hardest UT angle to measure
- BaBar Dalitz plot method approach drives the measurement and benefited from synergy with Dmixing analysis (e.g. reduction of experimental uncertainties inherent to the model uncertainty) (see Matt Bellis talk later in this session)
- First sign of an ADS signal in $\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$and

$$
\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{*} \mathrm{~K}^{ \pm}
$$

- Compelling evidence of direct CPV in

$$
\mathrm{B}^{ \pm} \rightarrow \mathrm{D}\left({ }^{*}\right) \mathrm{K}^{(*) \pm} \text { decays }
$$

- Close to "last word" from BaBar (~10-15 ${ }^{\circ}$ error)
- Still statistics limited, even with full data sets
- BaBar "legacy" γ average from GLW, ADS and Dalitz plot methods in progress
- Need to reduce the error in order to see possible deviations

Backup

BaBar defector and data sample

γ from D Dalitz plot method

- Signal yields as used in the final fit for CP parameters

	arXiv:1005.1096. Sub. to Phys. Rev. Lett.		PRD81, 112002 (2010)
B decay mode	$\begin{aligned} & \text { BaBar }\left(K_{s} \pi^{t} \pi\right) \\ & 468 \mathrm{MBB} \end{aligned}$	$\begin{aligned} & \text { BaBar (K } \left.K_{s} K^{+K}\right) \\ & 468 \mathrm{M} \text { BB } \end{aligned}$	Belle (Ks $\left.{ }^{+} \pi\right)^{\text {(}}$ 657 M BB
$\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$	896 ± 35	154 ± 14	757 ± 30
$\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{*}\left(\mathrm{D} \pi^{0}\right) \mathrm{K}^{ \pm}$	255 ± 21	56 ± 11	168 ± 15
$\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{*}(\mathrm{D} \gamma) \mathrm{K}^{ \pm}$	193 ± 19	30 ± 7	83 ± 10
$\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{* \pm}$	163 ± 18	28 ± 6	(not updated to 657 M B \bar{B})

- Efficiencies improved substantially (20% to 40% relative) with respect to previous BaBar measurement ($383 \mathrm{M} \mathrm{B} \overline{\mathrm{B}}$) PRD78, 034023 (2008)
- Reprocessed data set with improved track reconstruction
- Improved particle identification
${ }^{\bullet}$ Revised K_{S} selection criteria: negligible background from $\mathrm{D} \rightarrow \pi^{+} \pi^{-} \mathrm{h}^{+} \mathrm{h}^{-}$and $\mathrm{B} \rightarrow \mathrm{Da}_{1}(1260)$

$\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{S}} \pi^{+} \pi^{-}, \mathrm{K}_{\mathrm{S}} \mathrm{K}^{+} \mathrm{K}^{-}$amplitude analysis

- Extract D^{0} amplitude from an independent analysis of flavor tagged D^{0} mesons ($D^{*+} \rightarrow D^{0} T^{+}$)
- Experimental analysis using complete data sample benefits from synergy with D-mixing analysis
Σ Model determined without (reference) and with D-mixing
- Fit for amplitudes relative to CP eigenstates $\left[K_{s} \rho(770)\right.$ and $\left.K_{s} \mathrm{a}_{0}(980)\right]$ and assume no direct CPV

γ from D Dalitz plot method

- CP violation parameters are extracted from simultaneous unbinned maximum likelihood fit to $\mathrm{B}^{ \pm}$ $\rightarrow \mathrm{D}^{(*)} \mathrm{K}^{(*) \pm}$ data using $\mathrm{m}_{\mathrm{ES}}, \Delta \mathrm{E}$, Fisher and the Dalitz plot distributions ($\mathrm{s}^{+}, \mathrm{s}-$) arXiv:1005.1096.

γ from D Dalitz plot method

arXiv:1005.1096.
Sub. to Phys. Rev. Lett.

Source	x_{-}	y_{-}	x_{+}	y_{+}	x_{-}^{*}	y_{-}^{*}	x_{+}^{*}	y_{+}^{*}	x_{s-}	y_{s-}	x_{s+}
m_{s+}											
$m_{\mathrm{ES}}, \Delta E, \mathcal{F}$ shapes	0.001	0.001	0.001	0.001	0.004	0.006	0.008	0.004	0.006	0.003	0.004
Real D^{0} fractions	0.002	0.001	0.001	0.001	0.003	0.003	0.002	0.002	0.004	0.001	0.001
Charge-flavor correlation	0.003	0.003	0.002	0.001	0.005	0.005	0.008	0.002	0.001	0.001	0.003
Efficiency in the DP	0.003	0.001	0.003	0.001	0.001	0.001	0.001	0.001	0.003	0.001	0.002
Background DP distributions	0.005	0.002	0.005	0.003	0.003	0.002	0.004	0.004	0.010	0.004	0.007
$B^{-} \rightarrow D^{* 0} K^{-}$cross-feed	-	-	-	-	0.002	0.003	0.009	0.002	-	-	-
$C P$ violation in $D \pi$ and $B \bar{B}$	0.002	0.001	0.001	0.001	0.017	0.001	0.008	0.004	0.017	0.002	0.011
Non- $K^{*} B^{-} \rightarrow D K_{S}^{0} \pi^{-}$decays	-	-	-	-	-	-	-	-	0.001		
Total experimental	0.007	0.004	0.006	0.004	0.019	0.009	0.017	0.008	0.029	0.026	0.025

Source	x_{-}	y_{-}	x_{+}	y_{+}	x_{-}^{*}	y_{-}^{*}	x_{+}^{*}	y_{+}^{*}	x_{s-}	y_{s-}	x_{s+}
Mass and width of Breit-Wigner's	0.001	0.001	0.001	0.002	0.001	0.002	0.001	0.002	0.001	0.002	0.001
s_{s+}											
$\pi \pi$ S-wave parameterization	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001
$K \pi$ S-wave parameterization	0.001	0.004	0.003	0.008	0.001	0.006	0.002	0.004	0.003	0.002	0.003
0.007											
Angular dependence	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.002
Blatt-Weisskopf radius	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002
0.001											
Add/remove resonances	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001
DP efficiency	0.003	0.002	0.003	0.001	0.001	0.001	0.001	0.001	0.004	0.002	0.003
Background DP shape	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
(0.003	0.003	0.002	0.001	0.001	0.001	0.001	0.001	0.003	0.003	0.001
Mistag rate	0.003	0.001	0.003	0.001	0.001	0.001	0.001	0.001	0.003	0.001	0.003
Effect of mixing	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.002	0.002	0.001	0.001
DP complex amplitudes	0.006	0.006	0.007	0.009	0.002	0.007	0.003	0.006	0.007	0.006	0.006
Total D^{v} decay amplitude model											

γ from D Dalitz plot method

	Real part $(\%)$	Imaginary part $(\%)$	
z_{-}	$6.0 \pm 3.9 \pm 0.7 \pm 0.6$	$6.2 \pm 4.5 \pm 0.4 \pm 0.6$	
z_{+}	$-10.3 \pm 3.7 \pm 0.6 \pm 0.7$	$-2.1 \pm 4.8 \pm 0.4 \pm 0.9$	
z_{-}^{*}	$-10.4 \pm 5.1 \pm 1.9 \pm 0.2$	$-5.2 \pm 6.3 \pm 0.9 \pm 0.7$	
z_{+}^{*}	$14.7 \pm 5.3 \pm 1.7 \pm 0.3$	$-3.2 \pm$	
z_{s-}	$7.5 \pm 9.6 \pm 2.9 \pm 0.7$	$12.7 \pm 9.8 \pm 0.6$	
z_{s+}	$-15.1 \pm 8.3 \pm 2.9 \pm 0.6$	$4.5 \pm 10.6 \pm 3.6 \pm 0.8$	

Parameter	$68.3 \% \mathrm{CL}$	$95.4 \% \mathrm{CL}$
$\gamma\left({ }^{\circ}\right)$	$68_{-14}^{+15}\{4,3\}$	$[39,98]$
$r_{B}(\%)$	$9.6 \pm 2.9\{0.5,0.4\}$	$[3.7,15.5]$
$r_{B}^{*}(\%)$	$13.3_{-3.9}^{+4.2}\{1.3,0.3\}$	$[4.9,21.5]$
$\kappa r_{s}(\%)$	$14.9_{-6.2}^{+6.6}\{2.6,0.6\}$	<28.0
$\delta_{B}\left({ }^{\circ}\right)$	$119_{-20}^{+19}\{3,3\}$	$[75,157]$
$\delta_{B}^{*}\left({ }^{\circ}\right)$	$-82 \pm 21\{5,3\}$	$[-124,-38]$
$\delta_{s}\left({ }^{\circ}\right)$	$111 \pm 32\{11,3\}$	$[42,178]$

Other hadronic parameters relevant for γ

- Updated search for $\mathrm{B}^{+} \rightarrow \mathrm{D}^{+} \mathrm{K}^{0}$ and $\mathrm{B}^{+} \rightarrow \mathrm{D}^{+} \mathrm{K}^{* 0}$
- Can only proceed through annihilation or rescattering

${ }^{\bullet}$ Allows an estimation of $r_{B}{ }^{0}$ for B^{0} from r_{B} for B^{+}needed for
${ }^{-} \mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{0}$ measures $\mathrm{r}_{\mathrm{B}}{ }^{0} \sin (2 \beta+\gamma)$ in time-dependent asymmetry
${ }^{-} \mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{* 0}$ measures γ in direct CPV (similar to B^{+})
- BaBar analysis with full data sample: $468 \mathrm{M} \mathrm{B} \overline{\mathrm{B}}$
arXiv:1005.0068.
- No evidence for signals

$$
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow D^{+} K^{0}\right) & <2.9 \times 10^{-6}, 90 \% \text { C.L. } \\
\mathcal{B}\left(B^{+} \rightarrow D^{+} K^{* 0}\right) & <3.0 \times 10^{-6}, 90 \% \text { C.L. }
\end{aligned}
$$

BaBar vs WA

Courtesy of V. Tisserand and the CKM fitter group
μ supremum method used to combine HFAG averages of experimental inputs (conservative, but guarantees coverage).
See Karim Trabelsi's talk at CKM 2008 for details.

