

International Conference on High Energy Physic

2

the

100

Fermando Martínez-Vidal, On behalf of the BaBar Collaboration

Neasuren

KMangle

July 22-28, 2010 Palais des Congrès, Paris

13

CKM angle γ

Very impressive consistency

Apex of the CKM Unitary Triangle (UT) over constrained

CP violation measurements give angles

Semileptonic decay rates (and other methods) give sides

- Precise measurement of SM parameters
- Search for NP in discrepancies of redundant measurements
- Still have some work to do on γ : less precisely known UT angle (most difficult to measure)

ICHEP 2010, Paris

Fernando Martinez Vidal

CKM angle γ

Apex of the CKM Unitary Triangle (UT) over constrained

CP violation measurements give angles

Semileptonic decay rates (and other methods) give sides

- Precise measurement of SM parameters
- Search for NP in discrepancies of redundant measurements
- Still have some work to do on γ : less precisely known UT angle (most difficult to measure)
- Important to measure γ since, together with $|V_{ub}|$, selects ρ - η value independently of most types of NP

SM candle type of measurement

• The constraint on γ come from tree-level B \rightarrow DK decays

ICHEP 2010, Paris

γ from B—DK decays

γ from B→DK decays

Gronau, London, Wyler, PLB 253, 483 (1991); PLB 265, 172 (1991)

γ from B \rightarrow DK decays Dalitz plot method

γ from B \rightarrow DK decays Dalitz plot method

ICHEP 2010, Paris

Fernando Martinez Vidal

Experimental techniques

- Signal is separated from background through unbinned maximum likelihood fits to $B^{\pm} \rightarrow D^{(*)} K^{(*)\pm}$ data using m_{ES} , ΔE and *Fisher (or Neural Network)* discriminant
- Use large $B^{\pm} \rightarrow D^{(*)} \pi^{\pm}$ data control samples ($r_B \sim 0.01$, x10 smaller than for DK)

BaBar analysis based on complete data sample (468 M $B\overline{B}$ pairs)

arXiv:1005.1096. Sub. to Phys. Rev. Lett.

Efficiencies improved substantially (20% to 40% relative) with respect to previous BaBar measurement (383 M BB)
 PRD78, 034023 (2008)

- Reprocessed data set with improved track reconstruction
- Improved particle identification
- Revised K_S selection criteria: negligible background from $D \rightarrow \pi^+\pi^-h^+h^-$ and $B \rightarrow Da_1(1260)$

ICHEP 2010, Paris

Fernando Martinez Vidal

$D \rightarrow K_{S}\pi^{+}\pi^{-}, K_{S}K^{+}K^{-}$ amplitude analysis

arXiv:1004.5053. Accepted by Phys. Rev. Lett.

• Extract D⁰ amplitude from an independent analysis of flavor tagged D⁰ mesons (D^{*+} \rightarrow D⁰ π ⁺)

- Experimental analysis using complete data sample benefits from synergy with D-mixing analysis
 Model determined without (reference) and with D-mixing
 See Matt Bellis talk in this session for more details
- Fit for amplitudes relative to CP eigenstates [$K_{s\rho}(770)$ and $K_{sa_0}(980)$] and assume no direct CPV

Wave	Parameterization		Wave	Parameterization		
(ππ S-wave	K-matrix Main differences with Belle		K [±] K _s S-wave	BW: CA and DCS a₀(980),		
Kπ S-wave	K-matrix (LASS-like)		K⁺K⁻ S-wave	CA $a_0(1450)$ Flatte a_0 (980),		
ππ P-wave	BW: ω(782), G.S o(770)			DVV a0(1450) and 10(1370)		
			K⁺K⁻ P-wave	BW Φ(1020)		
Kπ P-wave	BW: CA and DCS K*(892),			BW f ₂ (1270) ⁰		
	CA K*(1680)		K⁺K⁻ D-wave	(,		
ππ D-wave	BW f ₂ (1270) ⁰					
Kπ D-wave	BW CA and DCS $K_2^*(1430)$	Good fit quality (χ^2 /ndof) taking into account statistical experimental and model uncertainties				

ICHEP 2010, Paris

• CP violation parameters are extracted from simultaneous unbinned maximum likelihood fit to B[±] \rightarrow D^(*) K^{(*)±} data using m_{ES}, Δ E, *Fisher* and the Dalitz plot distributions (s+,s-)

• Use frequentist method to obtain the (common) weak phase γ and the hadronic parameters r_B , δ_B (different for each B decay channel) from 12 (x,y) observables arXiv:1005.1096.

 Model error benefited from overlap with D-mixing analysis (e.g. reduction of experimental uncertainties inherent to the model uncertainty)

 $\gamma \pmod{180^\circ} = (78.4^{+10.8}_{-11.6} \pm 3.6 \pm 8.9)^\circ r_B(DK) = 0.160^{+0.040}_{-0.038}$

Y from ADS method arXiv:1006.4241. Sub. to Phys. Rev. D

ICHEP 2010, Paris

γ from ADS method

[•] Use frequentist interpretation (similar to Dalitz plot method) to obtain weak phase γ and hadronic parameters r_B , δ_B from $R_{ADS}^{(*)}$ and $A_{ADS}^{(*)}$ observables

γ from GLW method arXiv:1007.0504. Sub. to Phys. Rev. D

• Update with final data sample (468 M $B\overline{B}$ pairs). Previous analysis used 383 M $B\overline{B}$ pairs

PRD77, 111102 (2008)

• Reconstruct $B^{\pm} \rightarrow DK^{\pm}$ final states with $D \rightarrow K + K - \pi^{+}\pi^{-}$ (CP even) and $D \rightarrow K_{s}\pi^{0}, K_{s}\omega, K_{s}\phi$ (CP odd) (five different final states for each B charge)

- Efficiencies improved substantially (40% to 60% relative) with respect to previous measurement
 - Reprocessed data set with improved track reconstruction
 - Improved particle identification
 - Introduce Fisher discriminant in the fit rather than apply cut on event shape variables

γ from GLW method

arXiv:1007.0504. Sub. to Phys. Rev. D

• Extract signal yields fitting directly to observables
$$\mathbb{R}^{\pm}_{K/\pi}$$
, $\mathbb{R}_{K/\pi}$, and $\mathbb{A}_{CP\pm}$
 $\mathbb{R}^{\pm}_{K/\pi} = \frac{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{CP\pm}\pi^-) + \Gamma(B^+ \to D_{CP\pm}\pi^+)}$, $\mathbb{R}_{K/\pi} = \frac{\Gamma(B^- \to D^0K^-) + \Gamma(B^+ \to \overline{D}^0K^+)}{\Gamma(B^- \to D^0\pi^-) + \Gamma(B^+ \to \overline{D}^0\pi^+)}$
 $\mathbb{A}_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}K^-) - \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)}$, $\mathbb{R}_{CP\pm} \approx \frac{\mathbb{R}_{K/\pi}^{\pm}}{\mathbb{R}_{K/\pi}}$

3.6 σ significance of CPV in B[±] \rightarrow DK[±] from A_{CP+}

 $A_{CP+} = 0.25 \pm 0.06 \pm 0.02$ $A_{CP-} = 0.09 \pm 0.07 \pm 0.02$ $R_{CP+} = 1.18 \pm 0.09 \pm 0.05$ $R_{CP-} = 1.07 \pm 0.08 \pm 0.04$

γ from GLW method

• Extract signal yields fitting directly to observables $\mathbb{R}^{\pm}_{K/\pi} \mathbb{R}_{K/\pi}$ and $\mathbb{A}_{CP\pm}$ $\mathbb{R}^{\pm}_{K/\pi} = \frac{\Gamma(B^{-} \rightarrow D_{CP\pm}K^{-}) + \Gamma(B^{+} \rightarrow D_{CP\pm}K^{+})}{\Gamma(B^{-} \rightarrow D_{CP\pm}\pi^{-}) + \Gamma(B^{+} \rightarrow D_{CP\pm}\pi^{+})}$ $\mathbb{R}_{K/\pi} = \frac{\Gamma(B^{-} \rightarrow D^{0}K^{-}) + \Gamma(B^{+} \rightarrow \overline{D}^{0}K^{+})}{\Gamma(B^{-} \rightarrow D^{0}\pi^{-}) + \Gamma(B^{+} \rightarrow \overline{D}^{0}\pi^{+})}$ $\mathbb{R}_{CP\pm} = \frac{\Gamma(B^{-} \rightarrow D_{CP\pm}K^{-}) - \Gamma(B^{+} \rightarrow D_{CP\pm}K^{+})}{\Gamma(B^{-} \rightarrow D_{CP\pm}K^{-}) + \Gamma(B^{+} \rightarrow D_{CP\pm}K^{+})}$ $R_{CP\pm} \approx \frac{R_{K/\pi}^{\pm}}{R_{K/\pi}}$ 3.6 σ significance of CPV in B[±] \rightarrow DK[±] from A_{CP+} $A_{CP+} = 0.25 \pm 0.06 \pm 0.02$

$$A_{CP-} = 0.09 \pm 0.07 \pm 0.02$$

$$R_{CP+} = 1.18 \pm 0.09 \pm 0.05$$

$$R_{CP-} = 1.07 \pm 0.08 \pm 0.04$$

$$x_{\pm} = \frac{1}{4} \left[R_{CP+} (1 \mp A_{CP+}) - R_{CP-} (1 \mp A_{CP-}) \right]$$

$$x_{+} = -0.057 \pm 0.039 \pm 0.015$$
$$x_{-} = +0.132 \pm 0.042 \pm 0.018$$

Consistent with and of similar precision to Dalitz results

 $x_{+} = -0.103 \pm 0.037 \pm 0.006 \pm 0.007$ $x_{-} = +0.060 \pm 0.039 \pm 0.007 \pm 0.006$ [Dalitz results]

γ from GLW method

γ from GLW method

ICHEP 2010, Paris

Fernando Martinez Vidal

γ from GLW method

arXiv:1007.0504. Sub. to Phys. Rev. D

• Use frequentist interpretation (similar to Dalitz plot method) to obtain weak phase γ and hadronic parameters r_B , δ_B from $R_{CP\pm}$ and $A_{CP\pm}$ observables

Summary and outlook

 $\begin{array}{l} \textbf{3.5}\sigma \text{ significance of CPV, } B^{\pm} \rightarrow D(^{*})K(^{*})^{\pm} \\ \text{ combined, Dalitz only} \end{array}$

 $\begin{array}{l} \textbf{3.6}\sigma \text{ significance of CPV, } B^{\pm} \rightarrow DK^{\pm} \text{ only,} \\ GLW \text{ only} \end{array}$

ICHEP 2010, Paris

Summary and outlook

4.4 σ significance of CPV in B[±] \rightarrow DK[±] only, Dalitz+GLW combined

Summary and outlook

• Recent progress on γ , the hardest UT angle to measure

• BaBar Dalitz plot method approach drives the measurement and benefited from synergy with Dmixing analysis (e.g. reduction of experimental uncertainties inherent to the model uncertainty) (see Matt Bellis talk later in this session)

First sign of an ADS signal in $B^{\pm} \to DK^{\pm}$ and $B^{\pm} \to D^{*}K^{\pm}$

- Compelling evidence of direct CPV in $B^{\pm} \rightarrow D(^{*})K^{(^{*})\pm}$ decays
- Close to "last word" from BaBar (~10-15° error)
 - Still statistics limited, even with full data sets
 - BaBar "legacy" γ average from GLW, ADS and Dalitz plot methods in progress
- Need to reduce the error in order to see possible deviations

Fernando Martinez Vidal

<10

Belle II

Backup

BaBar defector and data sample

Signal yields as used in the final fit for CP parameters

	arXiv:1005.	1096.			
	Sub. to Phys	s. Rev. Lett.	PRD81, 112002 (2010)		
B decay mode	BaBar (K _s π ⁺ π ⁻)	BaBar (K _s K ⁺ K ⁻)	Belle (K _S π ⁺ π ⁻)		
	468 M BB	468 M BB	657 M BB		
B±→DK±	896±35	154±14	757±30		
$B^{\pm} \rightarrow D^{*}(D\pi^{0})K^{\pm}$	255±21	56±11	168±15		
B±→D*(Dγ)K±	193±19	30±7	83±10		
B±→DK*±	163±18	28±6	(not updated to 657 M $B\overline{B}$)		

- Efficiencies improved substantially (20% to 40% relative) with respect to previous BaBar measurement (383 M BB)
 PRD78, 034023 (2008)
 - Reprocessed data set with improved track reconstruction
 - Improved particle identification
 - Revised K_S selection criteria: negligible background from $D \rightarrow \pi^+ \pi^- h^+ h^-$ and $B \rightarrow Da_1(1260)$

$D \rightarrow K_{S}\pi^{+}\pi^{-}, K_{S}K^{+}K^{-}$ amplitude analysis

- Extract D⁰ amplitude from an independent analysis of flavor tagged D⁰ mesons (D^{*+} \rightarrow D⁰ π ⁺)
- Experimental analysis using complete data sample benefits from synergy with D-mixing analysis
 - Model determined without (reference) and with D-mixing
- Fit for amplitudes relative to CP eigenstates $[K_{SP}(770)]$ and $K_{Sa_0}(980)$ and assume no direct CPV

• CP violation parameters are extracted from simultaneous unbinned maximum likelihood fit to B[±] \rightarrow D^(*) K^{(*)±} data using m_{ES}, Δ E, *Fisher* and the Dalitz plot distributions (s+,s-) arXiv:1005.1096.

http://www.slac.stanford.edu/xorg/hfag/triangle/moriond2010

-

arXiv:1005.1096. Sub. to Phys. Rev. Lett.

Source	x_{-}	y_{-}	x_+	y_+	x_{-}^{*}	y_{-}^{*}	x^*_+	y_+^*	x_{s-}	y_{s-}	x_{s+}	y_{s+}
$m_{\rm ES}, \Delta E, \mathcal{F}$ shapes	0.001	0.001	0.001	0.001	0.004	0.006	0.008	0.004	0.006	0.003	0.004	0.002
Real D^0 fractions	0.002	0.001	0.001	0.001	0.003	0.003	0.002	0.002	0.004	0.001	0.001	0.001
Charge-flavor correlation	0.003	0.003	0.002	0.001	0.005	0.005	0.008	0.002	0.001	0.001	0.003	0.001
Efficiency in the DP	0.003	0.001	0.003	0.001	0.001	0.001	0.001	0.001	0.003	0.001	0.002	0.001
Background DP distributions	0.005	0.002	0.005	0.003	0.003	0.002	0.004	0.004	0.010	0.004	0.007	0.002
$B^- \to D^{*0} K^-$ cross-feed	_	_	_	_	0.002	0.003	0.009	0.002	_	_	_	_
CP violation in $D\pi$ and $B\overline{B}$	0.002	0.001	0.001	0.001	0.017	0.001	0.008	0.004	0.017	0.002	0.011	0.001
Non- $K^* B^- \to DK^0_S \pi^-$ decays	_	_	_	_	_	_	_	_	0.020	0.026	0.025	0.036
Total experimental	0.007	0.004	0.006	0.004	0.019	0.009	0.017	0.008	0.029	0.027	0.029	0.036

Source	x_{-}	y_{-}	x_+	y_+	x_{-}^{*}	y_{-}^{*}	x_+^*	y_{+}^{*}	x_{s-}	y_{s-}	x_{s+}	y_{s+}
Mass and width of Breit-Wigner's	0.001	0.001	0.001	0.002	0.001	0.002	0.001	0.002	0.001	0.002	0.001	0.002
$\pi\pi$ S-wave parameterization	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.002
$K\pi$ S-wave parameterization	0.001	0.004	0.003	0.008	0.001	0.006	0.002	0.004	0.003	0.002	0.003	0.007
Angular dependence	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.002	0.001
Blatt-Weisskopf radius	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001
Add/remove resonances	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.002
DP efficiency	0.003	0.002	0.003	0.001	0.001	0.001	0.001	0.001	0.004	0.002	0.003	0.001
Background DP shape	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Mistag rate	0.003	0.003	0.002	0.001	0.001	0.001	0.001	0.001	0.003	0.003	0.001	0.001
Effect of mixing	0.003	0.001	0.003	0.001	0.001	0.001	0.001	0.001	0.003	0.001	0.003	0.001
DP complex amplitudes	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.002
Total D^0 decay amplitude model	0.006	0.006	0.007	0.009	0.002	0.007	0.003	0.006	0.007	0.006	0.006	0.008

arXiv:1005.1096. Sub. to Phys. Rev. Lett.

	Real part $(\%)$	Imaginary part $(\%)$
Z _	$6.0 \pm 3.9 \pm 0.7 \pm 0.6$	$6.2 \pm 4.5 \pm 0.4 \pm 0.6$
Z_+	$-10.3 \pm 3.7 \pm 0.6 \pm 0.7$	$-2.1 \pm 4.8 \pm 0.4 \pm 0.9$
Z^*_{-}	$-10.4 \pm 5.1 \pm 1.9 \pm 0.2$	$-5.2 \pm 6.3 \pm 0.9 \pm 0.7$
z^*_+	$14.7 \pm 5.3 \pm 1.7 \pm 0.3$	$-3.2 \pm 7.7 \pm 0.8 \pm 0.6$
Z_{s-}	$7.5 \pm 9.6 \pm 2.9 \pm 0.7$	$12.7 \pm 9.5 \pm 2.7 \pm 0.6$
Z_{s+}	$-15.1 \pm 8.3 \pm 2.9 \pm 0.6$	$4.5 \pm 10.6 \pm 3.6 \pm 0.8$

Parameter	68.3% CL	95.4% CL
γ (°)	68^{+15}_{-14} {4,3}	[39, 98]
$r_B \ (\%)$	$9.6 \pm 2.9 \ \{0.5, 0.4\}$	[3.7, 15.5]
$r^*_B~(\%)$	$13.3^{+4.2}_{-3.9}$ {1.3, 0.3}	[4.9, 21.5]
$\kappa r_s \ (\%)$	$14.9^{+6.6}_{-6.2}$ {2.6, 0.6}	< 28.0
δ_B (°)	119^{+19}_{-20} {3, 3}	[75, 157]
δ^*_B (°)	$-82 \pm 21 \ \{5,3\}$	[-124, -38]
δ_s (°)	$111 \pm 32 \{11, 3\}$	[42, 178]

Other hadronic parameters relevant for γ

- Updated search for $B^+ \rightarrow D^+ K^0$ and $B^+ \rightarrow D^+ K^{*0}$
 - Can only proceed through annihilation or rescattering

•Allows an estimation of r_B^0 for B^0 from r_B for B^+ needed for

- $B^0 \rightarrow D^0 K^0$ measures $r_B^0 sin(2\beta + \gamma)$ in time-dependent asymmetry
- $B^0 \rightarrow D^0 K^{*0}$ measures γ in direct CPV (similar to B^+)
- BaBar analysis with full data sample: 468 M BB arXiv:1005.0068. Submitted to PRD

• No evidence for signals

$$\mathcal{B}(B^+ \to D^+ K^0) < 2.9 \times 10^{-6}, \ 90\%$$
C.L.
 $\mathcal{B}(B^+ \to D^+ K^{*0}) < 3.0 \times 10^{-6}, \ 90\%$ C.L.

BaBar vs WA

Courtesy of V. Tisserand and the CKM fitter group

μ supremum method used to combine HFAG averages of experimental inputs (conservative, but guarantees coverage). See Karim Trabelsi's talk at CKM 2008 for details.