

Operation of the CMS detector with first collisions at 7 TeV at the LHC

Gianluca Cerminara (CERN)
on behalf of the CMS Collaboration

The CMS Detector @ the LHC

Muon

Total Weight : 12,5001. Overall Diameter: 15.00m Overall Length : 21.60m Magnetic field stressa

- Compact Muon Solenoid (CMS):
 - compact 4π experiment → design based on:
 - high intensity B field (3.8T superconducting solenoid)
 - redundant muon spectrometer
 - high precision silicon tracker ($\sigma_x = 15-200 \text{um}$)
 - ~ 76M channels (Pixel + SiStrip)
 - high precision homogeneous EM calorimeter (ECAL)
 - ~ 76k PbWO_₄ scintillating crystals
 - hermetic calorimeter
- High level of complexity → very demanding in terms of operation:
 - Very careful preparation of online/offline infrastructure prior to first data
 - CMS is presenting results obtained with data acquired up to last Monday!

Hadron Forward

Tracker

HCAL

The CMS Detector @ the LHC

- Compact Muon Solenoid (CMS):
 - − compact 4π experiment → design based on:
 - high intensity B field (3.8T superconducting solenoid)
 - redundant muon spectrometer
 - high precision silicon tracker ($\sigma_x = 15-200 \text{um}$)
 - ~ 76M channels (Pixel + SiStrip)
 - high precision homogeneous EM calorimeter (ECAL)
 - ~ 76k PbWO₄ scintillating crystals
 - hermetic calorimeter
- High level of complexity → very demanding in terms of operation:
 - Very careful preparation of online/offline infrastructure prior to first data
 - CMS is presenting results obtained with data acquired up to last Monday! 30/03 10:10 21/04 14:04

Offline workflows:

deliver validated & calibrated data for physics analysis

Need to fulfil several requirements:

- offline reconstruction must provide both:
 - prompt feedback on detector status and data quality
 - sample for physics analysis
- provide up-to-date alignment & calibration (AlCa)
 - calibration workflows with short latency
 - provide samples for calibration purposes: AlCa streams
 - consistent set of conditions for data and MC
- data validation and certification for analysis
 - data quality monitoring (DQM)

Offline workflows: deliver validated & calibrated data for physics analysis Need to fulfil several requirements:

- offline reconstruction must provide both:
 - prompt feedback on detector status and data quality
 - → sample for physics analysis
- provide up-to-date alignment & calibration (AlCa)
 - calibration workflows with short latency
 - → provide samples for calibration purposes: AlCa streams
 - consistent set of conditions for data and MC
- data validation and certification for analysis
 - data quality monitoring (DQM)

Data Streams & Tier0 processing

- Data streams & Tier0 workflows → specialized for different tasks
- Depending on the latency
 - express → prompt feedback & calibrations
 - short latency: 1-2 hours
 - ~40Hz bandwidth shared by:
 - calibration (½)
 - detector monitoring (¼)
 - physics monitoring (¼)
 - Alignment & Calibration (AlCa) streams
 - bulk data → sample for physics analysis (prompt reconstruction)
 - split in Primary Datasets (using High Level Trigger (HLT) decision)
 - will be delayed of 48h → get latest calibrations
 - writing ~300Hz

Offline workflows: deliver validated & calibrated data for physics analysis Need to fulfil several requirements:

- offline reconstruction must provide both:
 - prompt feedback on detector status and data quality
 - → sample for physics analysis
- provide up-to-date alignment & calibration (AlCa)
 - calibration workflows with short latency
 - → provide samples for calibration purposes: AlCa streams
 - consistent set of conditions for data and MC
- data validation and certification for analysis
 - data quality monitoring (DQM)

Calibration Workflows

- Provide most up-to-date conditions @ all stages of the data processing
- Different workflows depending on the time scale of updates:
 - quasi-online calibrations for HLT and express:
 - e.g. beam-spot → quick determination online
 - prompt calibrations: monitor/update conditions expected to vary runby-run (or even more frequently):
 - updated conditions must be ready before prompt-reconstruction
 - offline re-reco workflows:
 - more stable conditions
 - workflows which need higher statistics:
 run on AlCa streams produced during prompt-reco or offline re-reco

Prompt-Calibration Loop

- Prompt calibration workflows:
 - conditions which need continuous updates:
 - beam-spot position → measured every 23s (= 1 Lumi Section)
 - tracker problematic channels → respond to HV trips/noise
 - conditions which need monitoring
 - calorimeter problematic channels → mask hot channels
 - tracker alignment → monitor movements of large structures
- Update strategy based on delay between express and prompt reco
 - AlCa streams out of express used for calibration
 - compute conditions in time for prompt-reco
 - → start 48h later
- Reduce need for offline re-reco
- Dedicated resources @ CERN:
 CMS Analysis Facility (CAF)

Example: Beam-Spot Measurement

- Track beam-spot 3D position and width as a function of time:
 - track based → correlation of impact parameter and azimuthal angle $(d_0-\phi)$
 - vertex based → 3D fit to distribution of primary-vertexes
- Quasi-online workflow for express (and HLT) reconstruction
 - using DQM-dedicated stream (sampling @ ~ 100Hz max)
 - using track based and pixel-only vertexing → very fast
 - 1 value every 5 Lumi-Section (~2 min)
- Runs also in prompt-calibration loop
 - full statistics and tracking capabilities

Alignment & Calibration Streams

- All workflows fed using dedicated skims or datasets:
 - event selection tuned on the needs of the workflow
 - event content reduced to optimize bandwidth/disk space usage
- 2 kind of calibration streams:
 - produced directly @ HLT level
 - workflows statistically limited or requiring dedicated selection:
 - e.g. ECAL π^0 stream and ϕ -symmetry....
 - profit from High Level Trigger flexibility → software based
 - produced offline during express and prompt reconstruction (and offline re-processing)
 - just skimming events dedicated to calibrations

Example: ECAL Calibration

- Calibration stream produced @ HLT level: π^0 and η calibration events
- Stream optimized for:
 - low CPU usage @ HLT:
 - seeded by Level1 single- e/γ or single-Jet triggers
 - regional unpacking ($\Delta \eta \times \Delta \phi = 0.25 \times 0.4$ around the seed)
 - event selection based on info @ crystal-level only
 - low bandwidth

store data only for interesting crystals (ROI)

Produced directly

Example: ECAL Calibration

- Inter-calibration based on several (complementary) techniques:
 - − \$\psi\$-symmetry \$\to\$ \$\phi\$ invariance of energy flow @ fixed pseudo-rapidity
 - dedicated stream (@ HLT) of Minimum-Bias events
 - already ~ asymptotic in terms of performance
 - π^0 and η calibration → photon pairs π^0 (η) → γγ
 - isolated electrons and di-electron resonances (larger dataset O(fb⁻¹))
 - monitoring of crystal transparency and light yield (only @ higher lumi)
- Combination allows to reach 1.15% precision in the barrel (design goal for H $\rightarrow \gamma \gamma$ is 0.5%)
 - estimated comparing in-situ calib.
 against test-beam values
 (1/4 of the barrel crystals)

Different MC scenarios: e.g. alignment

- Different scenarios for conditions in Monte-Carlo
 - IDEAL → asymptotic reach of calibration and performance
 - STARTUP → realistic calibrations and problematic channels
- Example: different scenarios for tracker alignment
 - median of residual distribution (DMR) for all modules with > 200 entries
 - ideally (perfect alignment and infinite statistics) spikes at zero
 - RMS → estimate of alignment accuracy
- Alignment performance → already close to systematic limit

Offline workflows: deliver validated & calibrated data for physics analysis Need to fulfil several requirements:

- offline reconstruction must provide both:
 - prompt feedback on detector status and data quality
 - sample for physics analysis
- provide up-to-date alignment & calibration (AlCa)
 - calibration workflows with short latency
 - → provide samples for calibration purposes: AlCa streams
 - consistent set of conditions for data and MC
- data validation and certification for analysis
 - data quality monitoring (DQM)

CMS

Data Certification

- The complexity of the offline workflows requires robust validation
- Several stages of Data Quality Monitoring (DQM):
 - online DQM → monitor detector performance during data-taking
 - dedicate event stream (sampling)
 - offline DQM → monitor performance of physics objects
 - runs on full statistics available for analysis:
 - express reco → fast feedback
 - prompt-reco → continuous monitor
 - offline re-reco → validation of software and condition updates
- Physics Validation Team → coordinates the validation activity.

Feedback from:

- groups responsible for physics objects
- detector performance groups
- analysis group

Performance

- Offline workflows demonstrated needed robustness and flexibility:
 - can tune latency depending on needs
 - produce physics results very quickly: plots like this one →
 out of prompt-reconstruction (few hours after the data acquisition)
- Quality of prompt-reco → minimize need for offline re-reco
 - by design 3 re-reco per year
- Key ingredients: performance of reconstruction code:
 - on minimum bias events:
 - timing: 0.6 seconds per event
 - event size:
 - 400kB RECO
 - 150kB AOD

Outlook

- ICHEP2010 → great stress-test of the whole analysis chain
 - acquired/calibrated/aligned/validated and analyzed all data up to last Monday
- Offline workflows → key ingredient for analysis capabilities
 - tools for fast calibration and feedback on detector performance
 - reliable validation strategy
 - produce and distribute data "analysis-ready"
- So far: performance of the system fully satisfactory
 - present commitment → optimize and consolidate all steps
 - getting ready the challenge of higher luminosity