

Klaus Rith

University of Erlangen-Nürnberg & DESY

(on behalf of the HERMES collaboration)

ICHEP 2010, Paris

July 22, 2010

The Nucleon - QCD picture

Constituents: quarks and gluons

<u>Properties</u>: longitudinal momentum \vec{xP} , intrinsic transverse momentum \vec{p}_T , spin \vec{s} , orbital angular momentum \vec{L}_2

Transverse Momentum Dependent DFs

Only f_1 and g_1 measurable in inclusive DIS, all others in SIDIS

Transverse Momentum Dependent DFs

Only f_1 and g_1 measurable in inclusive DIS, all others in SIDIS

 $D_1 \equiv D_q^h = ,normal' FF,$ $H_1^\perp = spin-dependent Collins FF *$

Transverse Momentum Dependent DFs

Only f_1 and g_1 measurable in inclusive DIS, all others in SIDIS

D₁ = D_q^h = ,normal' FF, H₁⊥= spin-dependent Collins FF *#

Angular distributions in electroproduction

o: angle between lepton scattering plane
 and hadron production plane

 ϕ_S : angle between lepton scattering plane and transverse spin component S_\perp of target nucleon

$$d\sigma = \frac{d^{6}\sigma}{dx dy dz d\phi d\phi_{s} dP_{T}^{h}}$$

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi d\sigma_{UU}^{1} + \frac{1}{Q}\cos\phi d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q}\sin\phi d\sigma_{LU}^{3}$$

$$+ \int_{e} \int_{e} \sin(\phi - \phi_{s}) d\sigma_{UT}^{8} + \sin(\phi + \phi_{s}) d\sigma_{UT}^{9} + \sin(3\phi - \phi_{s}) d\sigma_{UT}^{10}$$

$$+ \frac{1}{Q}\sin(2\phi - \phi_{s}) d\sigma_{UT}^{11} + \frac{1}{Q}\sin\phi_{s} d\sigma_{UT}^{12}$$

$$+ \lambda_{e} \left[\cos(\phi - \phi_{s}) d\sigma_{UT}^{11} + \frac{1}{Q}\cos\phi_{s} d\sigma_{UT}^{12} + \frac{1}{Q}\cos(2\phi - \phi_{s}) d\sigma_{LT}^{15}\right] \right]$$

$$d\sigma_{XY}$$
Beam Target
Polarisation
$$+ \int_{e} \left\{\sin 2\phi d\sigma_{UL}^{4} + \frac{1}{Q}\sin\phi d\sigma_{UL}^{5} + \frac{1}{Q}\cos\phi d\sigma_{UL}^{11}\right\}$$

Detailed studies require: longitudinally polarised beam (λ_e) , longitudinally and transversely polarised target (S_L, S_T)

TMDs from SIDIS

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi (d\sigma_{UU}^{1}) + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}$$

$$+ S_{T} \left\{ \sin(\phi - \phi_{s}) (d\sigma_{UT}^{0}) + \sin(\phi + \phi_{s}) (d\sigma_{UT}^{9}) + \sin(3\phi - \phi_{s}) (d\sigma_{UT}^{10}) \right\}$$

$$+ \frac{1}{Q} \sin(2\phi - \phi_{s}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_{s} d\sigma_{UT}^{12}$$

$$+ \lambda_{e} \left[\cos(\phi - \phi_{s}) (d\sigma_{LT}^{13}) + \frac{1}{Q} \cos \phi_{s} d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{s}) d\sigma_{LT}^{15} \right]$$

$$+ S_{L} \left\{ \sin 2\phi (d\sigma_{UL}^{4}) + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{15} \right] \right\}$$

$$+ S_{L} \left\{ \sin 2\phi (d\sigma_{UL}^{4}) + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{15} \right] \right\}$$

TMDs in SIDIS at LO

LO Function	Moment	Convolution	Name
$d\sigma^9_{UT}$	$\sin(\phi + \phi_s)$	$\mathbf{h}_1 \otimes \mathbf{H}_1^\perp$	Transversity
$d\sigma^8_{UT}$	$\sin(\phi - \phi_s)$	$\mathbf{f}_{1\mathrm{T}}^{\perp} \otimes \mathbf{D}_{1}$	Sivers
$d\sigma^1_{UU}$	$\cos(2\phi)$	$\mathbf{h}_1^{\perp} \otimes \mathbf{H}_1^{\perp}$	Boer-Mulders
$d\sigma^{10}_{\ UT}$	$\sin(3\phi - \phi_s)$	$\mathbf{h}_{1\mathrm{T}}^{\perp} \otimes \mathbf{H}_{1}^{\perp}$	Prezelosity
$d\sigma^4_{UL}$	$sin(2\phi)$	$\mathbf{h}_{1\mathrm{L}}^{\perp} \otimes \mathbf{H}_{1}^{\perp}$	Worm-gear 1 Mulders-Kotzinian
$d\sigma^{13}_{LT}$	$\cos(\phi - \phi_s)$	$\mathbf{g}_{1\mathbf{T}}^{\perp} \otimes \mathbf{D}_1$	Worm-gear 2

The others are subleading, i.e., suppressed by 1/Q

TSA in inclusive hadron electroproduction

TSA: Tranverse target single-spin asymmetry

Reminder: Large A_N in $p^\uparrow p \rightarrow \pi$ (K) X Interpretation: Collins?, Sivers? Twist-3? ...?

TSA in inclusive hadron electroproduction

TSA: Tranverse target single-spin asymmetry

Reminder: Large A_N in $p^\uparrow p \rightarrow \pi$ (K) X <u>Interpretation</u>: Collins?, Sivers? Twist-3? ...?

Inclusive hadron electroproduction: $e^{\pm} p^{\uparrow} \rightarrow h X$

Scattered lepton not detected: quasi-real photoproduction

π^+	π^-	K⁺	K-	
66.4 M	56.8 M	5.5 M	3.0 M	

Target-spin reversal every 90 s

 $A_{UT}(x_B,Q^2,\phi) \cong A_{UT}^{\sin\phi}(x_B,Q^2) \sin\phi$

Front view of HERMES

Inclusive hadron TSA

Inclusive hadron TSA

AN resembles Sivers as predicted in M. Anselmino et al., PRD 81 (2010) 034007

Boer-Mulders DF & Cahn effect

transversely polarised quarks with p_T in <u>unpolarised nucleon</u>

Boer-Mulders DF & Cahn effect

transversely polarised quarks with $\ensuremath{p_{T}}$ in unpolarised nucleon

$$F_{UU}^{\cos\phi} = \frac{2M}{Q} C \left[-\frac{\hat{h} \cdot \vec{p}_T}{M_h} x (h_1^{\perp} H_1^{\perp} - \frac{\hat{h} \cdot \vec{k}_T}{M} x (f_1^{\perp} H_1^{\perp} - \frac{\hat{$$

intrinsic transverse momentum p_T of quarks

$cos(n\phi)_{UU}$ moments for π^{\pm} - H target

Quark flavour dependent p_T ? Significant Boer-Mulders contribution to $\langle \cos \phi \rangle$?

$cos(n\phi)_{UU}$ moments for π^+ - H, D target

Pretzelosity DF h_{1T}^{\perp}

U

L

т

U

 \mathbf{f}_1

 f_{1T}^{\perp}

Т

h₁[⊥]

 h_{1L}^{\perp}

h_{1T}

L

g₁

g_{1T}

Worm-gear (Mulders-Kotzinian) DF h_{1L}^{\perp}

N/q	U	L	Т
U	f ₁		h₁ [⊥]
L		g ₁	\mathbf{h}_{1L}^{\perp}
т	f_{1T}^{\perp}	g _{1T}	\mathbf{h}_{1} \mathbf{h}_{1T}^{\perp}

Worm-gear (Mulders-Kotzinian) DF h_{11}

N/q

U

L

Т

Worm-gear DF g_{1T}^{\perp}

 $\mathsf{A}_{\mathsf{I},\mathsf{T}}^{\mathsf{cos}(\phi - \phi \mathsf{s})} \propto \mathsf{g}_{\mathsf{I}}\mathsf{T}^{\perp} \otimes \mathsf{D}_{1}$

N/q	U	L	т
U	f ₁		$\mathbf{h_1}^{\perp}$
L		ď	\mathbf{h}_{1L}^{\perp}
т	f_{1T}^{\perp}	g _{1T}	\mathbf{h}_{1} \mathbf{h}_{1T}^{\perp}

Generalised Parton Distributions (GPDs) Generalisation of Form Factors (moments of GPDs) and PDFs (forward limit)

Generalised description of nucleon structure in 2+1 dim

Number density of quarks with longitudinal momentum fraction x at radial position r_{\perp}

GPDs and quark total angular momentum

Ji relation: $J_q = \frac{1}{2\Delta\Sigma} + \left[L_q \right] = \lim_{t \to 0} \int_{-1}^{1} dx \times \left[H(x,\zeta,t) + E(x,\zeta,t) \right]$ See talk by M. Guidal

 $H(x,\zeta,t), E(x,\zeta,t)$: Generalised Parton Distributions Access: *exclusive processes*

Final state sensitive to different GPDs $\gamma, \rho_{1}^{o}, \pi$... Spin- $\frac{1}{2}$ target: 4 chiral-even leading-twist quark GPDs H, \widetilde{H} (E, \widetilde{E}) conserve (flip) nucleon helicity Vector mesons (ρ, ω, ϕ) H, E Pseudoscalar mesons(π, η) $\widetilde{H}, \widetilde{E}$ DVCS (γ) H, E, $\widetilde{H}, \widetilde{E}$

hermes Deeply Virtual Compton Scattering & GPDs

$$\begin{aligned} \bullet \qquad \sigma_{ep} \propto |T_{BH}|^{2} + |T_{DVCS}|^{2} + \underbrace{T_{BH}T_{DVCS}^{*} + T_{BH}^{*}T_{DVCS}}_{I} \\ d\sigma \sim d\sigma_{UU}^{BH} \qquad + \qquad e_{\ell}d\sigma_{UU}^{I} \qquad + \qquad d\sigma_{UU}^{DVCS} \\ & + \qquad e_{\ell}P_{\ell}d\sigma_{LU}^{I} \qquad + \qquad P_{\ell}d\sigma_{LU}^{DVCS} \\ & + \qquad e_{\ell}S_{L}d\sigma_{UL}^{I} \qquad + \qquad S_{L}d\sigma_{UL}^{DVCS} \\ & + \qquad e_{\ell}S_{L}d\sigma_{UL}^{I} \qquad + \qquad S_{T}d\sigma_{UT}^{DVCS} \\ & + \qquad e_{\ell}S_{L}d\sigma_{UL}^{I} \qquad + \qquad S_{T}d\sigma_{UT}^{DVCS} \\ & + \qquad e_{\ell}P_{\ell}S_{L}d\sigma_{LL}^{I} \qquad + \qquad P_{\ell}S_{L}d\sigma_{LL}^{DVCS} \\ & + \qquad e_{\ell}P_{\ell}S_{L}d\sigma_{LL}^{I} \qquad + \qquad P_{\ell}S_{L}d\sigma_{LL}^{DVCS} \\ & + \qquad e_{\ell}P_{\ell}S_{T}d\sigma_{LT}^{I} \qquad + \qquad e_{\ell}P_{\ell}S_{T}d\sigma_{LT}^{I} \qquad + \qquad P_{\ell}S_{T}d\sigma_{LT}^{DVCS} \end{aligned}$$

DVCS @ HERMES

Complete measurement of amplitudes in $eN \rightarrow e'N \; \gamma$ possible at HERMES:

- Both beam charges
- Longitudinal beam polarisation (both helicities)
- Unpolarised H, D and nuclear targets
- Longitudinally polarised H and D targets
- Transversely polarised H target
- Recoil Detector

DVCS asymmetries measured @ HERMES

DVCS asymmetries measured @ HERMES

Proton: beam charge asymmetry Strong t dependence JHEP 11 (2009) 083 0.1 VGG Regge, no D --- Dual-GT Regge $\mathsf{A}^{\cos(0\phi)}_{\mathrm{C}}$ $\propto -\frac{t}{O}A_C^{\cos\phi}$ 0 -0.1 0.3 HERMES 0.2 $\mathbf{A}_{\mathbf{C}}^{\cos\phi}$ ep→epγ $\propto F_1 \mathrm{Re}\mathcal{H}$ 0.1 0 0.1 ${\sf A}_{\sf C}^{\cos{(2\varphi)}}$ \approx 0: twist-3 GPDs 0 -0.1 0.1 $A_{\rm C}^{\cos{(3\varphi)}}$ \approx 0: gluon helicity-0 flip GPDs -0.1 Assoc. 70 fraction 10 fraction of 10⁻¹ 10⁻¹ 10-2 10 $ep \rightarrow e'\Delta + \gamma$ 1 -t [GeV²] Q² [GeV²] overall XB

VGG: Phys. Rev D 60 (1999) 4017, Prog. Nucl. Part. Phys. 42 (2001) 401

Dual: Phys. Rev D 79 (2009) 017501

Proton: beam charge asymmetry - new data

Large 2006/07 data set (1700 pb⁻¹)

Proton: beam helicity asymmetry

Model that fits A_C overshoots $A_{LU,I}$ sin ϕ by factor of 2

A_{C,LU} : Proton vs deuteron

Proton and deuteron data are compatible for all leading amplitudes

Proton: transverse target pol. asymmetry

Sensitive to GPD E

JHEP 06 (2008) 066

Model: VGG with variation of J_u , while $J_d=0$

Proton: transverse target pol. asymmetry

Sensitive to GPD E

JHEP 06 (2008) 066

Model: VGG with variation of J_u , while $J_d=0$

Proton: longitudinal target pol. asymmetry

Long. target-spin asymmetry

Double-spin asymmetry

Backups

Transverse SSA for π^+ - π^-

N/q	U	L	Т
U	- f ₁		$\mathbf{h_1}^{\perp}$
L		g ₁	\mathbf{h}_{1L}^{\perp}
т	f_{1T}^{\perp}	g _{1T}	$h_1 = h_{1T}^{\perp}$

PRL 103 (2009) 152002

The "Kaon Challenge"

Similarly for Collins: $K^+ > \pi^+$

 $\pi^{+}/K^{+} \text{ production dominated}$ by scattering off u-quarks: $\simeq - \frac{f_{1T}^{\perp,u}(x,p_{T}^{2}) \otimes D_{1}^{u \to \pi^{+}/K^{+}}(z,K_{T}^{2})}{f_{1}^{u}(x) D_{1}^{u \to \pi^{+}/K^{+}}(z)}$ $\checkmark K^{+} = |u\overline{s}\rangle, \pi^{+} = |u\overline{d}\rangle \implies \text{ non-trivial role of sea quarks ?}$

K_T dependence of FF?
Different kinematic dependences?

$\cos(n\phi)_{UU}$ moments for π^{\pm} - D target

N/q	U	L	T
U	f ₁	(h_1^{\perp}
L		g 1	h _{1L}
т	f_{1T}^{\perp}	g _{1T}	\mathbf{h}_{1} \mathbf{h}_{1T}^{\perp}

$cos(n\phi)_{UU}$ moments for π^- – H, D target

Boer-Mulders DF

Boer-Mulders DF

N/q	U	L	T
U	f ₁		$\mathbf{h_1}^\perp$
L		g ₁	h _{1L}
т	f_{1T}^{\perp}	g _{1T}	\mathbf{h}_{1} \mathbf{h}_{1T}^{\perp}

Worm-gear (Mulders-Kotzinian) DF h_{1L}^{\perp}

Compatible with zero within uncertainties

Subleading term $sin(\phi_s)_{UT}$

Subleading term $sin(2\phi - \phi_s)_{UT}$

N/q

U

L

Azimuthal dependences in DVCS

- Example: unpolarised proton target
- Cross section
 - $\sigma_{LU}(\phi; P_B, C_B) = \sigma_{UU} \left[1 + \frac{P_\ell}{P_\ell} A_{LU}^{DVCS} + \frac{e_\ell}{P_\ell} P_\ell A_{LU}^I + \frac{e_\ell}{P_\ell} A_C^I \right]$
- Beam-charge asymmetry

$$A_{C}(\phi) = \frac{\left(\sigma^{+\to} + \sigma^{+\leftarrow}\right) - \left(\sigma^{-\leftarrow} + \sigma^{-\to}\right)}{\left(\sigma^{+\to} + \sigma^{+\leftarrow}\right) + \left(\sigma^{-\leftarrow} + \sigma^{-\to}\right)} = -\frac{1}{D(\phi)} \frac{x_{B}^{2}}{y} \sum_{n=0}^{3} \frac{c_{n}^{I}}{c_{n}^{I}} \cos(n\phi)$$

Charge-difference beam-helicity asymmetry

$$A_{LU}^{I}(\phi) = \frac{\left(\sigma^{+\to} + \sigma^{-\leftarrow}\right) - \left(\sigma^{+\leftarrow} + \sigma^{-\to}\right)}{\left(\sigma^{+\to} + \sigma^{-\leftarrow}\right) + \left(\sigma^{+\leftarrow} + \sigma^{-\to}\right)} = -\frac{1}{D(\phi)} \frac{x_{B}^{2}}{Q^{2}} \sum_{n=1}^{2} s_{n}^{I} \sin(n\phi)$$

Charge-averaged beam-helicity asymmetry

 $A_{LU}^{DVCS}(\phi) = \frac{\left(\sigma^{+\rightarrow} - \sigma^{+\leftarrow}\right) - \left(\sigma^{-\leftarrow} - \sigma^{-\rightarrow}\right)}{\left(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}\right) + \left(\sigma^{-\leftarrow} + \sigma^{-\rightarrow}\right)} = \frac{1}{D(\phi)} \cdot \frac{x_B^2 t \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)}{Q^2} s_1^{DVCS} \sin(\phi)$

- Measurements of these beam-helicity asymmetries allow to separate contributions from DVCS and interference term
- This separation is impossible in measurements of single-charge beam-helicity asymmetry

$$A_{LU}(\phi) = \frac{\sigma^{\rightarrow} - \sigma^{\leftarrow}}{\sigma^{\rightarrow} + \sigma^{\leftarrow}}$$
 42

beam target

DVCS - nuclear mass dependence of A_c

PRC 81 (2010) 035202

No enhancement of nuclear asymmetries visible!!!

No enhancement of nuclear asymmetries visible!!!