Soft QCD Studies at CDF

Christina Mesropian

for the CDF collaboration

The Rockefeller University

Contents:

Part I:

- a. Definitions of MinBias (MB) and Underlying Event (UE)
- b. Underlying Event Studies at CDF
- c. Minbias measurements at CDF
- d. Hyperon Resonances

Part II

- a. Definition of Diffraction
- b. Single Diffractive measurements (W/Z production)
- c. Double Diffraction (soft and hard processes)
- d. Double Pomeron exchange and Exclusive processes

Collider Run II Integrated Luminosity

Tevatron ppbar Collider

Run I (1992-1996) \sqrt{s} =1.8 TeV (~120 pb⁻¹) Run II (2001-) \sqrt{s} = 1.96 TeV

Definitions: MB and UE

Minimum Bias (MB) – is the name of trigger

data sample is defined by trigger implementation

Underlying Event (UE) – is defined on event by event basis

everything else except 2->2 hard scatter

MB is background to high luminosity pile-up events

UE is background to high p_T observables (jets etc...)

slide from talk by Peter Scands at "MB & UE Workshop" at CERN, March 2010

The Underlying Event

 $\Delta \phi$ relative to the leading calorimeter jet (or the Z-boson)

- $\triangleright |\Delta \phi| < 60^{\circ}$ as Toward
- \triangleright 60° < $|\Delta\phi|$ < 120° as Transverse
- $\triangleright |\Delta \phi| > 120^{\circ}$ as **Away**
- > TransMAX (MIN) "Transverse" region with largest (smallest) number of charged particles

Underlying Event is

Beam Beam Remnants (BBR)
Final State Radiation (FSR)
Initial State Radiation (ISR)
Multi-Parton Interactions (MPI)

Data corrected to the particle level: Tracks $p_T>0.5$ GeV/s $|\eta|<1$ Jets with $|\eta|<2$

The Underlying Event

Underlying Event is

Beam Beam Remnants (BBR) Final State Radiation (FSR) Initial State Radiation (ISR)

Multi-Parton Interactions (MPI)

Different regions sensitive to different contributions:

TransMIN – BBR+MPI TransMAX – BBR+MPI+ ISR+FSR

Data corrected to the particle level: Tracks $p_T>0.5$ GeV/s $|\eta|<1$ Jets with $|\eta|<2$

UE in Drell-Yan and incl. jet events

Event topologies:

- Leading Jet
- Drell-Yan

Transverse Region

Drell-Yan:

less gluon radiation, easier to reconstruct

70 GeV/c²< M_{pair} <110 GeV/c² $|\eta(pair)|$ <6

The Drell-Yan Process

UE in Drell-Yan and incl. jet events

Event topologies:

- Leading Jet
- Drell-Yan

TransDIF Region = TransMAX-TransMIN sensitive to hard ISR

Drell-Yan:

less gluon radiation, easier to reconstruct

$$II = ee$$
, μμ
 $p_T > 20$ GeV/c
 $|\eta| < 1$

70 GeV/c²< M_{pair} <110 GeV/c² $|\eta(pair)|$ <6

MB: charged + neutral E_T

 ΣE_T from calor. information

506 /pb of data

Pythia tune A agrees reasonably well

Hyperon Production

Previous studies of Λ and Ξ from colliders were limited in statistics and p_T range

 10^8 MB events $|\eta| < 1.0$ $p_T > 0.3$ GeV $|z_{vtx}| < 60$ cm

Production cross section drops by a factor of ~7 as the number of strange quarks increases by 1.

Definitions: Diffraction

 Diffractive reactions at hadron colliders are defined as reactions in which no quantum numbers are exchanged between colliding particles

Definitions: Diffraction

Diffractive events at CDF are Identified by presence of:

intact leading particle or large rapidity gap

Diffractive W/Z Production

Diffractive W/Z production probes the quark content of the Pomeron

- to LO the W/Z are produced by a quark in the Pomeron
- production by gluons is suppressed by a factor of $lpha_{s}$ and can be distinguished by an associated jet

- CDF Run I studies used rapidity gaps method
 PRL 78, 2698 (1997)
 - Fraction of W events due to SD
 - [1.15 0.51(stat) 0.20(syst)]%

t - four-momentum transfer squared ξ - fractional momentum loss of pbar M_x - mass of system X $\xi = M_x^2/s$

Diffractive W Production

Identify diffractive events using Roman Pots:

accurate event-by-event ξ measurement no gap acceptance correction needed can still calculate ξ^{cal}

$$\xi^{cal} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

In W production, the difference between ξ^{cal} and ξ^{RP} is related to missing E_T and η_v

$$\xi^{RP} - \xi^{cal} = \frac{E_T}{\sqrt{s}} e^{-\eta_v}$$

allows to determine:

neutrino and W kinematics

reconstructed diffractive W mass

Diffractive W Production

- $\xi^{cal} < \xi^{RP}$ requirement removes most events with multiple pbar-p interactions
- 50 < M_W < 120 GeV/c²
 requirement on the reconstructed
 W mass cleans up possible
 mis-reconstructed events

Fraction of diffractive W

 R_W (0.03< ξ <0.10, |t|<1)= [0.97 ±0.05(stat) ±0.10(syst)]% consistent with Run I result, extrapolated to all ξ

Diffractive Z

Fraction of diffractive Z R_z (0.03< ξ <0.10, |t|<1)= [0.85±0.20(stat) ±0.08(syst)]%

Double Diffraction

Diffractive signature:

large central rapidity gap – slightly different gap definitions

Soft Diffraction

Double Diffraction

PRL 87, 141802 (2001)

Hard Diffraction

Jet-Gap Jet

1.8 TeV PRL 74, 855 (1995)

1.8 TeV PRL 80, 1156 (1998)

630 GeV PRL 81, 5278 (1998)

18

Central Gaps in Soft and Hard DD

soft DD

compare with

hard DD

Fraction of events with gaps:

~10% in soft DD events and ~1% in jet events

The distributions are similar in shape within the uncertainties

Exclusive Production

- suppression at LO of the background sub-processes
 (J_z=0 selection rule)
- "exclusive channel"
 clean signal
 (no underlying event)
- At the Tevatron we use similar processes with larger cross sections to test and calibrate theor. predictions

Dijets, PRD 77, 052004 (2008) $\gamma\gamma$, PRL 99, 242002 (2007) χ_c PRL102, 242001 (2009)

Exclusive Dimuon Production

Event Signature:

2 oppositely charged central muons + no other particles (large rapidity gap)

$$p + p \rightarrow p + \mu^+ \mu^- + p$$

Many Physics Processes in this data:

exclusive χ_c in DPE

3 GeV/c² < $M_{\mu\mu}$ < 4 GeV/c² $|\eta|$ < 0.6

Exclusive J/ ψ and ψ (2s)

J/ψ production

243 ±21 events

 $d\sigma/dy|_{v=0} = 3.92 \pm 0.62 \text{ nb}$

Theoretical Predictions

- 2.8 nb [Szczurek07,],
- 2.7 nb [Klein&Nystrand04],
- 3.0 nb [Conclaves&Machado05], and
- 3.4 nb [Motkya&Watt08].

$\Psi(2s)$ production

34±7 events

$$d\sigma/dy|_{y=0} = 0.54 \pm 0.15 \text{ nb}$$

R = $\psi(2s)/J/\psi = 0.14 \pm 0.05$

In agreement with HERA: $R = 0.166 \pm 0.012$ in a similar kinematic region

Exclusive $\chi_c \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) + \gamma$

Allowing EM towers ($E_T > 80 \text{MeV}$)
large increase in the J/ψ peak
minor change in the $\psi(2s)$ peak

1

Evidence for

 $\chi_c \rightarrow J/\psi + \gamma$ production

 $d\sigma/dy|_{y=0} = 75 \pm 14 \text{ nb},$ compatible with theoretical predictions 160 nb (Yuan 01) 90 nb (KMR01)

Conclusions

- CDF has very strong program of Soft QCD physics studies:
 - complete and large set of measurements of MB & UE
 - important to extrapolate MC to LHC energies and to estimate backgrounds for high $p_{\scriptscriptstyle T}$ processes
 - very extensive program of diffractive studies with rapidity gap and leading particle signatures for both soft and hard processes
 - new measurements of exclusive processes
 - validation of existing theoretical models
- More results are expected in final states correlations, heavy flavor MB, exclusive processes with forward gaps, and diffractive production with central gaps