First Results from CMS on QCD, Quarkonia, and Heavy-Flavour Physics in proton-proton Collisions at √s=7 TeV

Session 01: Early Experience and Results from LHC

S.Bolognesi (CERN)

Outline

□ Soft and hard QCD results

- track multiplicity, Underlying Event (jet area)
- jets performance

 \Rightarrow inclusive jet p_T spectrum, decorrelations, event shapes, 3j/2j

□ Inclusive b physics

b-tagging performances

 \longrightarrow b-jet and b \rightarrow µ+X production xsec

Quarkonia, exclusive B-physics

muon trigger, tracking resolution

$$\longrightarrow$$
 J/ $\psi \rightarrow \mu\mu$, Y $\rightarrow \mu\mu$ inclusive xsec and B \rightarrow J/ ψ fraction

 $B \rightarrow J/\psi + X$, (open charm resonances)

Soft QCD (p_T track>50 MeV)

 \Box dN/d η at 0.9, 2.36 and 7 TeV

- correction for NSD (~6% corr. \rightarrow 2.5% syst)
- 3 methods (pixel clusters, tracklets, tracks)
- Multiplicity of strange hadrons (K_s, Λ_0 , Ξ)
- \rightarrow rate increasing with \sqrt{s} underestimated by MC tunes
- Underlying event in transverse region
 - underestimation of track multiplicity at low $p_{\mathsf{T}}^{\mathsf{leading}}$
 - rise $0.9 \rightarrow 7$ TeV described only qualitatively by MC tunes

UE from jet area (vs=900 GeV)

 $\square \quad \rho = \underset{j \in jets}{\text{median}} \left[\left\{ \frac{p_{T_j}}{A_j} \right\} \right] \text{ area } (\eta, \phi) \text{ estimated from a uniform grid of very soft pseudo-particles* (FASTJET)}$

- \rightarrow measurement of total activity in the event
- k_T algo (others force a fixed jet shape) with R=0.6 (where ρ stable)
- $\rho \rightarrow \rho'$ considering only physical jets (at low $\sqrt{s} \rightarrow low$ occupancy, pseudo-jets dominate)

 Same pattern of disagreement tunes-data as standard approach but complementary:

- IR/collinear safe variable
- look at all the event (not only transverse region)
- no need of leading object (multi-jets)
- useful technique to remove PU (and UE) contribution at high luminosity

Jet performances

□ 4 jet algorithms with energy corrections from MC (+data cross-checks):

- Calorimeter Jets
 - \rightarrow uncertainty on Jet Energy Scale 10%
- Jet-Plus-Tracks
- Track Jets
- Particle-Flow Jets
- \rightarrow uncertainty on Jet Energy Scale 5%
- η dependence of jet energy : 2% uncertainty, linearly increasing with η
- Jet Energy Resolution 10% ($\sigma(p_T)$ ~10±1GeV for p_T ~100GeV)
- anti-K_T algorithm with D=0.5 (or 0.7)
- jet quality cuts (100% eff. p_T>50)
- single jet trigger: L1 jet>6 GeV + HLT jet > 15 GeV (uncorrected)

□ Rich set of measurements (next slides) → jet commissioning and test pQCD

Dijet mass and angular distribution

Dijet mass (|η|<1.3)</p>

$\chi_{dijet} = \exp(|y_1 - y_2|)$ probes parton scattering with light dependency on PDF

- flat for t-channel gluon exchange
- new physics \rightarrow excess at low χ
- Comparison with NLO using CTEQ6.6 + non-perturb. from Pythia

 μ_{f}, μ_{r} set to average dijet pT \rightarrow varied from half to twice PDF uncertainty from CTEQ6.6 uncertainty eigenvectors

S. Bolognesi – ICHEP 2010

6

Dijet Azimuthal Decorrelations

$$\Box \Delta \varphi_{dijet} = \left| \varphi_{jet1} - \varphi_{jet2} \right|$$

sensitive to higher order QCD radiation effects

- Madgraph underestimates low $\Delta \phi$ (multi-jet) region
- High sensitivity to ISR, much less to FSR

Hadronic Event Shape

S. Bolognesi – ICHEP 2010

-2

logτ_{L,C}

$2j \rightarrow 3j$ results

Hadronic event shape: sensitivity to tune ME MC

- same behavior for higher p_T^{leading}
- better data-MC agreement for higher jet multiplicity

□ 3j / 2j VS H_T:

Inclusive Jet dσ/dp_T

- Triggers: min.bias + single jet > 6,15,30 GeV combined exclusively at ~99% turn-on
- Agreement with NLO using CTEQ6.6

non-perturb. correction from Pythia-Herwig average PDF uncertainty comparing different PDF sets

• Few % difference in JES between algos \rightarrow 10% on the xsec

b production

□ Understanding and testing b-quark production at 7 TeV

• FEX, GS are higher order effects but dominate at LHC

With available statistics:

- measurement of inclusive b production cross section with
- 2 independent methods (next slides)

With more statistics:

- test the relative fractions of the different production processes
 - 3 muons angular correlation $BB_{bar} \rightarrow J/\psi + \mu + X$
 - pixel precision would allow multiple Secondary Vertices reconstruction

13

b-jet dσ/dp_T

 $\hfill \begin{tabular}{ll} \square Ratio to inclusive \rightarrow partial syst cancellation $$$

- b-tag efficiency syst.~ 20%
- JES b-jets VS LF jets ~1%

b-jet xsec

- Comparison to theory:
 - b-jets from MC@NLO (CTEQ6M)
 - inclusive jets from NLO (CTEQ6M)

 \rightarrow reasonable agreement with NLO **but different p_T**, η **shapes**

 $\mathbf{b} \rightarrow \mu + \mathbf{X}$ p-^{rel} Jet axis \Box Measurement from p_{rel}^{T} distribution fit with b and light-flavors templates $\sigma = (1.48 \pm 0.04_{\text{stat}} \pm 0.22_{\text{syst}} \pm 0.16_{\text{lumi}}) \,\mu\text{b}.$ $(p_{\tau}^{\mu} > 6 \text{ GeV}, |\eta^{\mu}| < 2.1)$ $\sigma_{\text{MC@NLO}} = [0.84^{+0.36}_{-0.19}(\text{scale}) \pm 0.08(m_b) \pm 0.04(\text{pdf})] \,\mu\text{b}.$ (b) (a) CMS Preliminary CMS Preliminary 1200 $\frac{d\sigma}{dp_T}(pp \rightarrow b+X \rightarrow \mu+X')[nb/GeV]$ [dn] ('X+μ ← CMS data CMS data MC@NLO (CTEQ6M, m_=4.75 GeV) MC@NLO (CTEQ6M, m =4.75 GeV) 1000 10³ MC@NLO scale variation (0.5-2) MC@NLO scale variation (0.5-2) PYTHIA (MSEL 1, CTEQ6L1) PYTHIA (MSEL 1, CTEQ6L1) 800 √s=7 TeV √s=7 TeV L=8.1 nb⁻¹ L=8.1 nb⁻¹ 10² $\frac{d\sigma}{d\eta}(pp \rightarrow b+X$ 600 400 10 200 0 25 10 15 20 30 muon p₊ [GeV] muon η

 \Box NLO underestimates xsec at central η and low p_T (very low p_T !)

Quarkonia

Production process not understood:

- COM [NRQCD]: long-distance contribution tuned to Tevatron data \rightarrow check at LHC scale
- CSM NNLO*

\Box J/ ψ polarization :

- transverse polariz. at high p_{τ} in COM
- Iongitudinal polariz. in NLO CSM

Non-prompt J/ψ 's for B-cross section

 \rightarrow CMS can probe wider η and p_{τ} range

Artoisenet. 2008 J/ψ production at the Tevatron NLO s^{1/2}=1.96 TeV 10 NI O (nb/GeV branching ratio: 5.88 % $\mu_0 = (4m_r^2 + P_T^2)^{1/2}$ 0.1 x Br LDME: 1.16 GeV3 0.01 v<0.6 $d\sigma \, /dP_T |_{|y| < 0.6}$ 0.001 1e-04 uncertainties: $\mu_0/2 < \mu_{fr} < 2 \mu_0$ 1e-05 for α_s^2 contributions: $m_s^2 < s_{ii}^{min} < 4 m_s^2$ 1e-06 20 25 10 15 30 5 P_T (GeV) 10 todb_T(J/ψ)*Br(J/ψ→μμ) nb/(GeV/c) Data with total uncertainties FONLL theoretical prediction Theoretical uncertainty 10 CDF coll. arXiv: 041207 From B 10⁻³ 5 0 10 p_⊤(J/ψ) GeV/c

15

J/ψ analysis

□ Inclusive (same for Y):

- central region with better resolution and low background endcap region down to $p_T \sim 0$
- Largest syst due to stat. uncertainty on efficiency from tag&probe
- Results for 5 polarization hypotheses (difference up to 20%-30% on J/ψ xsec)

(2D fit: mass & decay length)

S. Bolognesi – ICHEP 2010

19

Summary

□ soft QCD (p_T>50 MeV) for UE tuning

□ basic hard QCD measurement for the jet commissioning

- → strategic measurements (2j-3j) to tune non-perturbative component: sensitivity to tune Matrix Element MC
- \Box amazing b-tag performance \rightarrow first b jet measurement
 - \rightarrow NLO calculation underestimates b xsec at (very!) low p_T and central |η| GS, FE, FC components under study

 \Box very good trigger efficiency and tracking resolution \rightarrow rich quarkonia and B-physics program

- \rightarrow Y, J/ ψ prompt and non-prompt: first measurement at 7 TeV !
- → first steps into **exclusive B-physics** (training on open-charm) B→J/ ψ K, B_s→J/ ψ ϕ soon!

More details in ...

TALKS:

Measurement of the inclusive b production cross section in pp collisions at sqrt(s) = 7 TeV by L.Caminada in Session 05

Measurement of J/psi, Upsilon and b-hadron production in proton-proton collisions at sqrt(s) = 7 TeV with the CMS experiment

by N.Viegas Guerreiro in Session 05

Studies of QCD jet production with the CMS detector in pp Collisions at sqrt(s) = 7 TeV by Mikko Voutilainen in Session 03

Underlying Event Studies and Forward Physics at CMS by P.Bartalini in Session 03

POSTERS:

Study of the underlying event with the CMS detector at the LHC by A.Lucaroni in Session 03

Dijet physics with the CMS detector at LHC by C.Dragoiu in Session 03

Inclusive b-jet production measurement on early CMS data by S.M.Honc in Session 01

Study of hadronic event shapes with the CMS detector at LHC by M.A.Weber in Session 03

Bibliography

QCD-10-005Measurement of the Underlying Event Activity with the Jet Area/Median Approach at 0.9 TeVQCD-10-010Measurement of the Underlying Event Activity at the LHC with \sqrt{s} = 7 TeV and Comparison with \sqrt{s} = 0.9 TeV

- QCD-10-006 Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at \sqrt{s} =7 TeV
- QCD-10-007 Spectra of identified hadrons in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV
- QCD-10-011 Measurement of the Inclusive Jet Cross Section in pp Collisions at 7 TeV
- QCD-10-012 Measurement of the 3-jet to 2-jet Cross Section Ratio in pp Collisions at $\sqrt{s} = 7$ TeV
- QCD-10-015 Dijet Azimuthal Decorrelations and Angular Distributions in pp Collisions at \sqrt{s} = 7 TeV
- QCD-10-013 Hadronic Event Shapes in pp Collisions at 7 TeV
- EXO-10-001 Search for Dijet Resonances in the Dijet Mass Distribution in pp Collisions at $\sqrt{s} = 7$ TeV
- BPH-10-009 Inclusive b-jet production in pp collisions at $\sqrt{s} = 7$ TeV
- BPH-10-007 Open beauty production cross section with muons in pp collisions at $\sqrt{s} = 7$ TeV
- BPH-10-002 J/ ψ prompt and non-prompt cross sections in pp collisions at \sqrt{s} = 7 TeV
- BPH-10-003 Inclusive Upsilon production cross section in pp collisions at $\sqrt{s} = 7$ TeV
- BTV-10-001 Commissioning of b-jet identification with pp collisions at $\sqrt{s} = 7$ TeV
- JME-10-003 Jet Performance in pp Collisions at $\sqrt{s=7}$ TeV

First Results from CMS on QCD, Quarkonia, and Heavy-Flavour Physics in proton-proton Collisions at $\sqrt{s}=7$ TeV

Session 01: Early Experience and Results from LHC

Underlying event: tunes

24

regularization of 1/ $(p_T)^4$ divergence of the leading order partonic scattering amplitude

$$1/\hat{p}_T^4 \rightarrow 1/(\hat{p}_T^2 + \hat{p}_{T_0}^2)^2$$

$dN/d\eta$ and dN/dp_T for NSD

Correction for SD and DD

- → 2.5% uncert.from SD and DD fraction (3.7% uncert. from ev.selection)
- □ 3 methods:
 - pixel cluster counting
 - pT>30 MeV
 - 4.4% sys: 3% from cluster selection
 - pixel tracklets (cluster pairs) counting
 - pT>50 MeV
 - 2.9% sys: 1.9% reco efficiency
 - track counting (pixel+strip)
 - pT>100 MeV
 - 2.4% sys: 2.0% reco efficiency
 - \Box dN/dp_T for $|\eta|$ <2.4 and p_T>0.1
 - \rightarrow extrapolated to 0, inf with Tsallis fit

 $\langle p_{\rm T} \rangle = 0.545 \pm 0.005 \, ({\rm stat.}) \pm 0.015 \, ({\rm syst.}) \, {\rm GeV}/c.$

S. Bolognesi – ICHEP 2010

Fra SD 19.2 DD 12.9	ac. Sel.	eff.
SD 19.2 DD 12.9		
DD 12.9	2% 26.	7%
	9% 33.	6%
ND 67.9	9% 96.4	4%
NSD/ 80.8		3%

dN_{ch}/dη

checked with data with 20% precision (sensitive HF variables)

Jet performances

□ 4 (!) jet reconstruction algorithms with energy corrections from MC:

Calorimeter Jets

p0 ECAL mass peak, p0 HCAL response

- \rightarrow uncertainty JES 10%, JER 10%
- Jet-Plus-Tracks

Track Jets

good precision on B field, tracker material budget and alignm.

Particle-Flow Jets

particle composition of jets agree with simulation at few %

fragmentation impact on energy corrections < 3%

- \rightarrow uncertainty JES 5%, JER 10%
- Relative energy: 2% uncertainty, linearly increasing with η

S. Bolognesi – ICHEP 2010

□ anti-K_T algorithm with D=0.5

- □ jet quality cuts (100% eff. pT>50)
 - EM fraction, more cells or channels combined
 - sizable charged component (not only electrons)

□ single jet trigger:

L1 jet>6 GeV + HLT jet > 15 GeV (uncorrected)

JES: cross-checks with data

- Absolute scale
 - photon+jet

JES: cross-checks between different algorithms

b-tagging

□ For all the b-tagging algorithms amazing data-MC agreement for all the involved variable !

b-tag efficiency from data: p^T_{rel} fit with MC templates for passing/failing tag requirement

 $\epsilon_{\rm data}/\epsilon_{\rm MC}$ >~ 0.85

TCHP Discriminator

b-jet xsec: systematics

 $b \rightarrow \mu + X$: systematics

\square p_T^µ>5 GeV, |η^µ|<2.1 (track jets, p_T>1 GeV)

Light Flavors template from data

reweighting hadron spectrum with muon fake rate probability (from data) and considering p_T^{Rel} for any tracks \rightarrow 1-14% syst

- c template from MC → unique LF template
 c VS udsg content → 2-8% syst
- b template from MC

2-5% syst. from FC, FE, GS (Pythia VS Herwig)

- UE description has effect on track jet efficiency \rightarrow 8% syst
- 11% syst from luminosity

Å Å ř	-
Source	Uncertainty
Luminosity	11 %
Trigger	3–5%
Production mechanism	2-5%
b hadron decays	3%
Fragmentation	1-4%
Tracking efficiency	2%
c vs. udsg content	2-8%
udsg template	1 - 14%
Underlying event modeling	8%
MC event statistics	1-4%
Total	18-21%

CMS Preliminary

$B^{-} \rightarrow J/psi K^{-}$ Event Reconstruction in CMS

Contact: cms-pag-conveners-bph@cern.ch Date: July 20, 2010

34

- Select opposite sign di-muon combinations,
- Select combination/event with mass closest to the J/psi mass
- Select events with a di-muon vertex Probability >0.1%
- Muons satisfying quality criteria (require a muon chamber segment
 - matching in position and direction with the prediction of the associated track extrapolation)
- At least one muon required to fire the trigger
- ▶ Both muons required to have $p_T(mu)>3$ GeV/c, |eta(mu)|<2.4
- Combine J/psi candidate with tracks (p_T>0.9 GeV/c)
- Kinematic fit with J/psi mass constraint
- Require vertex probability > 0.1%
- If multiple candidates/event, choose highest p_T B⁻ candidate

J/psi K⁻ Invariant Mass Plot

- Single Muon trigger (p_⊤ >3 GeV/c cut at HLT level) ct/sigma_{ct} >1 ct:transverse decay length of J/psiK⁻ vertex relative to primary vertex sigma_{ct}=error on transverse decay length
- 1-d fit to J/psiK⁻ invariant mass:
- Signal: sum of three Gaussians (means and widths fixed to MC)
- Mean: 5.280 GeV/c²
- Resolution = 32 MeV/c² (weighted sum of gaussian resolutions)
- Background is fitted with exponential function
 - (slope floated in the fit)
- N_sig = 48 ± 8

Contact: cms-pag-conveners-bph@cern.ch Date: July 20, 2010

Inclusive D^0 production

Information: Candidates/0.01GeV 005 05 01GeV 01GeV Contact: Andrey Starodumov CMS preliminary starodum@mail.cern.ch $\sqrt{s} = 7 \text{ TeV}$ Presented for approval: May 4 http://indico.cern.ch/ conferenceDisplay.py?confId=93495 200 Selection criteria 'good' runs: 132440 - 133038 transverse momentum cuts $p_{\perp}(K) > 1$ 1.25 GeV 100 $p_{\perp}(\pi) > 1.0 \, \text{GeV}$ -μ: 1.867 ± 0.002 GeV $p_{\perp}(D^0) > 3.0 \,\text{GeV}$ σ: 0.016 ± 0.002 GeV 50⊢N: <u>493</u>± 45 Vertexing cuts S/\S+B: 13.1 $d(K,\pi) < 0.025 \,\mathrm{cm}$ 1.95 1.9 1.7 1.75 1.8 1.85 χ^2 < 4.5m_{Kπ} [GeV] $3 < l_{xy}/\sigma(l_{xy}) < -$ 20 MC expectations $\sigma(l_{xy}) < 0.03 \,\mathrm{cm}$ ▶ Peak: 1.863 ± 0.002 GeV \triangleright D^0 momentum vs. PV-SV direction $\angle(\vec{p}_{D0}, \overline{PV:SV})$ \triangleright Width: $0.014 \pm 0.002 \, \text{GeV}$ < 0.1

- Contact: Andrzej Zuranski
 - Andrzej.Zuranski@cern.ch
- Pre-approval talk
- Data: ~37M events in good runs:
 - /MinimumBias/Commissioning10-Apr20Skim_GOODCOLL-v1
 - /MinimumBias/Commissioning10-GOODCOLL-v9
- Reconstruct $D^* \rightarrow D^0 \pi_S$, $D^0 \rightarrow K \pi$
 - Kinematic selection:
 - $p_T > 600$ MeV/c for K and π
 - $p_T > 250$ MeV/c for π_s
 - $p_{T} > 5.0 \text{ GeV/c for D}^{*}$
 - Select D^{\star} candidate with highest p_{T} if there is more than one in an event
 - Track quality:
 - $N_{hit} > 5$ (except for π_S)
 - χ^2 / ndof < 2.5
 - $|d_{xy}| < 1mm; |\Delta z| < 1cm$
 - Mass windows (when plotting the other mass variable):
 - |M(Kπ) PDG| < 25 MeV/c²
 - |M(Kππ) M(Kπ) PDG| < 1.2 MeV/c²
 - Unbinned extended ML fit (RooFit)
 - Signal = Gaussian
 - Bkg = threshold function for ΔM and quadratic for M(K π)
 - Date: May 4, 2010

D⁺ search

S. Bolognesi – ICHEP 2010

39