First Results from ATLAS on QCD, Quarkonia and Heavy-flavour Physics in p-p collisions at 7TeV

Julie Kirk, RAL On behalf of the ATLAS Collaboration

Introduction

A very exciting few months:

- ☐ November 2009 First physics at 900 GeV.
- \square End of 2009 ATLAS recorded 12 μ b⁻¹ (plus a few hours at 2.36 GeV)
- ☐ Since 30th March 2010: LHC running at 7 TeV

Many physics results now being produced – can only give a flavour of results here.

For the details please see other ATLAS talks at this conference!!

Peak luminosity: 1.6 x 10³⁰ cm⁻²s⁻¹

Data-taking efficiency: 95%

ATLAS Detector

Much work done already to understand detector and trigger performance: see previous talks

- J. Baines Performance of the ATLAS Trigger
- A. Limosani Commissioning and performance of the ATLAS inner detector
- J. Fleckner Performance of track and vertex reconstruction and b-tagging studies
- P. Pralavorio Commissioning and performance of the ATLAS Calorimeter Systems
- A. Morley Material studies with Photon Conversions and Energy Flow at the ATLAS Experiment
- A. Schwartzman Performance of Jet, Missing Transverse Energy and Tau Reconstruction with ATLAS
- M. Woudstra Performance of the ATLAS muon spectrometer and of muon identification

All allows us to start doing physics

Charged Particle Multiplicities

Non-Diffractive (~34 mb)

Single-Diffractive $(\sim 12 \text{ mb})$

Double-Diffractive

Study inclusive charged particle multiplicities: > Can be used to tune MC models and study

components of cross-section

For details see talks by Alison Lister (Track 8 17:20 22nd July) and Emily Nurse (Track 3, 12:05 24th July)

New MC tune to diffractive limited ATLAS dataset

 N_{ch} = total number of charged particles

 N_{ev} = number of events

Observables:

N_{ch}= number of charged particles in an event

$$\frac{1}{N_{cv}} \cdot \frac{dN_{ch}}{d\eta}$$

$$\frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dn_{ch}}$$

$$\frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{d\eta} \qquad \frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dn_{ch}} \qquad \frac{1}{N_{ev}} \cdot \frac{1}{2\pi P_T} \cdot \frac{d^2N_{ch}}{d\eta dp_T}$$

$$\langle p_{\scriptscriptstyle T} \rangle_{
m VS} \; n_{\scriptscriptstyle ch}$$

ATLAS uses a single arm MBTS (min bias scintillator) trigger

- → no subtraction of SD component
- → minimal model dependence
- → measurement in kinematic region defined at hadron level by cuts on p_T , η , n_{ch}
- ➤ Analysis extended to lower momentum region (p_T>100MeV, n_{ch}≥2)
- > Luminosity 190 μb⁻¹ (10 M events)
- ➤ Data-MC agreement is worse at low p_T larger diffractive component which was not used in MC tune.

ATLAS-CONF-2010-046 ATLAS-CONF-2010-047

Charged Particle Multiplicities

Summarise all results:

Diffractive enhanced sample

Probe diffractive part of cross-section:

Probe diffractive part of cross-section:

Min. Bias Scintillator - require activity on one-side of detector ONLY

R_{ss} = Events with ONLY 1 side/ Events with EITHER side = (4.52 0.02 (stat) 0.61 (syst)) %

Generator	R_{ss}^{1-trk} (%)
Pythia 6	4.01
Pythia 8	5.11
Phojet	2.83

NB. Not yet corrected for detector effects

- Pythia 6 and 8 describe rate of diffractive events well
- Phojet best description of track distributions

ATLAS-CONF-2010-048

Underlying event

For details see talk by E. Nurse (Track 3, 12:05 24th July)

Underlying Event (UE) = everything EXCEPT the hard scattering. Similar to Min Bias analysis but look at topology of event. Leading track = highest p_T . Transverse region most sensitive to UE

Distributions are fully corrected for detector effects

Charged particle density

 MC all underestimate activity in plateau region by ~10-15%

also at 900 GeV

Emergence of jet-like structure as $p_{\text{T}}^{\text{lead}}\,$ inc.

ATLAS-CONF-2010-029

Observation of energetic jets

Anti- k_T jet algorithm (R=0.6) using calorimeter clusters. p_T (jet) > 80 GeV

Compare to Pythia MC09 tune : LO matrix element + parton shower

Di-jets with M_{jj} up to >2TeV (pT(jet1) > 80 GeV , pT(jet2) > 40 GeV)

(Statistical uncertainty only - systematic uncertainty on jet energy scale ~7%)

Jet production

For details see talk by T. Carli (Track 3, 15:00 24th July)

Jet production cross-sections for R=0.4,0.6, $p_T(jet)>60$ GeV Theory: NLO perturbative calculations with non-perturbative corrections

> Cross-sections in different rapidity bins Note multiplication factors for display:

Systematic uncertainty dominated by Jet Energy Scale (\sim 7% for central jets , <9% over full p_T and y region) 11% uncertainty due to luminosity measurement is not shown

Di-jet production

Di-jet production cross-sections for R=0.4,0.6, $p_T(jet1)>60$ GeV, $p_T(jet2)>30$ GeV

Good agreement between data and MC in both single and di-jet cross-sections

Track jets – charged particle jet cross-section ($p_T > 500 MeV$) Anti- k_T jets with R=0.4,0.6

Complimentary to calorimeter based measurement:

- Independent systematic uncertainties
- Can go to low momentum (min. bias trigger so no jet pT cut at trigger) emergence of jets from soft collisions

Measure Jet p_T and corrected fragmentation distribution f(z)

(z is defined to be the momentum of a charged particle in a jet along the jet's axis, divided by the momentum of the charged particle jet)

Shape of fragmentation best described by ATLAS AMBT1 tune for pT 10-24GeV. For p_T <10GeV fragmentation not well described by any tune

14

$J/\psi \rightarrow \mu^+\mu^-$

For details see talks by A. Korn, A. Nelson (Track 6, 16:34, 16:47 24th July)

First observation of $J/\psi \rightarrow \mu^+\mu^-$

Loose selection cuts:

- \square Min Bias trigger \rightarrow sensitive to $p_T(\mu) \sim 1 \text{GeV}$
- ☐ 2 opposite sign muons
- ☐ Fit to common vertex.

Kinematic distributions agree with MC expectation

Fraction of $J/\psi \rightarrow \mu^+\mu^-$ from B decays

In the fraction:

$$\mathcal{R} \equiv \frac{d\sigma(pp \to b\bar{b}X \to J/\psi X')}{d\sigma(pp \to J/\psi X'')_{\text{prompt}}}$$

many factors cancel (efficiency, acceptance) making this an attractive "early data" measurement.

Discriminating variable pseudo proper-time:

Mass and lifetime distributions fitted simultaneously using unbinned maximum likelihood fit.

ATLAS-CONF-2010-062

Fraction of $J/\psi \rightarrow \mu^+\mu^-$ from B decays

Good data/MC agreement for $p_T(J/\psi)$ up to 15 GeV

12 14 J/ψ p_T (GeV)

10

0.3

0.1

$J/\psi \rightarrow \mu + \mu$ - differential cross-section

$J/\psi \rightarrow e^+e^-$

More difficult – large background, small signal and bremsstrahlung of electrons

- important source of low p_T electrons to understand electron ID and trigger

Selection:

- ➤ 2 electrons with p_T>2,4 GeV
- > Track quality and shower shapes
- ➤ high threshold hits in TRT

= 28 + / - 2

bkg

Signal from fit integration from 1.5 to 4 GeV Bkg from fit integration from -3σ to $+2\sigma$

Observation of $\psi(2s)$ and Υ

 $\psi(2s)$ selection as for J/ ψ (slide 16)

$$\begin{split} p_T(\mu_1) &> 4 \text{ GeV} \\ p_T(\mu_2) &> 2.5 \text{ GeV} \end{split}$$

First candidate ttbar events

Analysed 280 nb-1

Lepton+jets: 7 candidate events (4e, 3 μ)

Di-lepton + jets : 2 candidate events (1 ee, 1 $e\mu$)

Candidate event ttbar → 'e + jets'

- Electron p_T =41.4 GeV, MET=90.6 GeV \rightarrow M_T = 68.2 GeV
- Four jets with $p_T > 20 \text{ GeV}$
- One b-tagged jet

Candidate event ttbar \rightarrow e- μ + jets

- Electron p_T=22.7 GeV, Muon p_T=47.8 GeV, MET=90.6 GeV
- Three jets with p_T>20 GeV
- One b-tagged jet

Summary

- ATLAS producing many new physics results
 - LHC luminosity increasing all the time so we can expect many more in the near future
- Studies of minimum bias events and underlying event well underway.
 - Tuning of MC to high energy data started
- Jet studies started :
 - first measurement of jet production cross-sections
 - good agreement with data
- Heavy flavour physics getting underway
 - − $J/\Psi \rightarrow \mu^{+}\mu^{-}$ production cross-section
 - − Fraction of J/ Ψ → μ ⁺ μ ⁻ from B decays
 - Observation of $\Upsilon \rightarrow \mu^+ \mu^-$ and $\psi(2s) \rightarrow \mu^+ \mu^-$
 - First candidate ttbar events
- Looking to the future:
 - expect more detailed quarkonia results soon for QCD studies
 - top quark observation
 - New Physics

_

_

Backup

ttbar "e+jets" candidates

ttbar "e-mu +jets" candidates

Jet $p_T = 421$ GeV, dijet $m_{12} = 2.5$ TeV

$Jet p_{T} = 1120 GeV (!)$

