EARLY MATERIAL STUDIES AT THE ATLAS EXPERIMENT

Anthony Morley
CERN
On behalf of the ATLAS Collaboration

ATLAS INNER DETECTOR AND EM CALORIMETER

- $|\eta|$ <2.5, Barrel and end cap geometry
- In the barrel a particle will pass through
 - 3 Si pixel layers
 - 8 layers of Si microstrip detectors (SCT) (4 space points)
 - On average 35 straws in the transition radiation tracker (TRT)
 - Details were given in Antonio Limosani's presentation on Commissioning and Performance of the ATLAS Inner Detector

- $|\eta|$ <3.2, Barrel and end cap geometry
- Liquid Argon active medium
- 3 longitudinal layers with a accordion geometry
- Pre sampler provides pre shower sampling inside the cryostat
- Details were given in Pascal Pralavorio's presentation on Commissioning and Performance of the ATLAS Calorimeter Systems

Anthony Morley, CERN

MATERIAL IN THE INNER DETECTOR

- A knowledge of the location and composition of the material is important for the physics performance of the detector
 - Calibration of the EM calorimeter
 - Track reconstruction performance
 - Multiple Coulomb scattering and ionisation
 - Electron and Photon analysis
 - Conversions and Bremsstrahlung

Methods to determine material

- Calorimeter based method
 - Energy Flow
- Tracking Based method
 - Photon Conversions
 - Hadronic Interactions
 - K_s mass vs p_T (not discussed here)

PHOTON CONVERSION RECONSTRUCTION

- Dominated by low energy conversions from π^0 , etc. decays
- Tracks are reconstructed in the Inner Detector using:
 - Inside-out algorithm seeded by silicon hits
 - Backtracking seeded by the TRT (extended to Si)
- Conversion vertexing
 - Combinatorics reduced by using
 - Particle identification from the TRT
 - Geometric Cuts
 - Opening angles
 - Distance of minimum approach between tracks
 - D-R₁-R₂
 - Constrained Vertex Fit (χ^2)

ELECTRON IDENTIFICATION FROM THE TRT

- Transition Radiation Tracker used to reduce hadronic background in photon conversion studies
- Transition radiation (dependant on Lorentz γ) in scintillating foils and fibre result in a larger fraction of high threshold (HT) hits in the TRT
- Photon conversions have been used as the first clean supply of electrons for an in situ measurement of the HT probability at large γ

MATERIAL MAPS FROM PHOTON CONVERSIONS

- Conversion Selection
 - Silicon Hits required on both tracks
 - Electron identification from TRT high threshold hits
 - Vertex fit $\mathbf{X}^2 < 5$
 - Results in > 90% purity
- Good spatial resolution, ~4 mm in R
- Good agreement between data and simulation
- Pixel support structure and tube shifted by ≈ I cm in the simulation

MATERIAL MAPS FROM PHOTON CONVERSIONS

- Structure of the Pixels and first SCT layers are resolved
- Support structures from pixel detector are visible
- Octagonal support structure at incorrect radius in simulation

NEUTRAL MESON DALITZ DECAYS

- Dalitz decays to be used as crosscheck of the beam pipe material
- Same selections as material mapping analysis
- Good agreement between data and MC
- Calibration of conversion rate:
 - Use Dalitz decays to measure the rate of π^0 decay
 - Check ratio of conversions in the beam pipe and Dalitz decays to extract a conversion rate and hence the material.
 - Use the well known beam pipe geometry and material to normalise the material estimates

MATERIAL MAPPING WITH HADRONIC INTERACTIONS

- Hadrons created at the primary interaction will interact with material layers
 - Secondary hadronic interactions can produce more than two outgoing particles
- Reconstructed vertices of hadronic interaction can provide information about the material distribution
- Vertex reconstruction procedure:
 - Tracks from the primary vertex are vetoed
 - Transverse impact parameter < 2mm
 - Find all two track vertices and merge all two track vertices that are compatible with each other
 - Finally it is ensured that all track-vertex combinations are unique

Reconstructed mass of the vertex assuming the particle mass is equal to that of a pion

• Vertices from K^0_s 's, γ 's and Λ 's are vetoed after vertices are constructed by mass selection

MATERIAL MAPS FROM HADRONIC INTERACTIONS

- · Structure of beam pipe, pixels layers and supports visible
- Vertex resolution ≈250µm in R and Z for R <100mm

MATERIAL MAPS FROM HADRONIC INTERACTIONS

- Overall good agreement between data and simulation
- Pixel support structure and tube shifted by ≈ I cm in the simulation, in good agreement with what was observed with conversions
- Evidence that beam pipe is not in the centre of the detector
- Possible implications for conversion studies

MATERIAL MAPS FROM HADRONIC INTERACTIONS

Innermost Layer of the Pixel Detector

- · Hadronic interaction vertices prove to be a very useful tool
- Fine details of the detector description can be tested

ENERGY FLOW IN THE EM CALORIMETER

Occupancy in the 2nd sampling layer of the calorimeter

- Hot and cold zones due to noisy cells, readout problems and non-nominal high voltage
- More details in Pascal Pralavorio's presentation on Commissioning and Performance of the ATLAS Calorimeter Systems

- Calorimeter occupancy variation in φ
 (at constant η) is sensitive to the
 total material in front of the
 calorimeter
 - Calorimeter intrinsically uniform in
- The occupancy is defined as the fraction of events in which the energy is above a fixed threshold (5 times the electronic noise level)

$$R = \frac{Occ_{\phi, \eta - slice} - \langle Occ_{\eta - slice} \rangle}{\langle Occ_{\eta - slice} \rangle}$$

 R<0 implies larger amount of material w.r.t. material in the slice

INNER DETECTOR SERVICES

- Inner wall of Barrel Liquid Argon cryostat before ID endcap insertion.
- Note that services etc. run at constant Φ.

ENERGY FLOW IN THE EM CALORIMETER

- Up to 1 X_0 of material missing in a very localised region near 1D rails for 0.6 < $|\eta|$ < 1.4

Good description of SCT heat exchangers and TRT services

SUMMARY

- A variety of complementary techniques have been used to probe the material in the ATLAS Detector
- · Generally the Monte Carlo is in very good agreement with data
 - Small differences between data and Monte Carlo have been observed and understood
- Systematic studies of the material throughout the whole detector are underway to quantify any difference between data and simulation
- Simulation geometry will be updated to accurately model the detector

EXTRA SLIDES

ID MATERIAL ESTIMATION

Radiation length of a given detector layer

$$\frac{X}{X_0} = -\frac{9}{7} \ln (1 - F_{conv})$$

$$F_{conv} = \frac{N_{reco}}{N_{tot}} \frac{F_{comb} F_{mis}}{\epsilon} \frac{1}{\exp(-7/9M_{up})}$$

- F_{conv} fraction of converted photons
- N_{reco} number of reconstructed conversions
- N_{tot} initial numbers of photons
- Mup material upstream of a given layer
- F_{comb} correction for combinatorial background
- F_{mis} correction for resolution effects
- E efficiency

with:

• F_{comb} , F_{mis} and ϵ are currently evaluated on simulation