Recent Results of Charmonium Transitions at BESIII

Gang LI for BESIII Collaboration

Institute of High Energy Physics, Beijing, China

ICHEP 2010, July 22-28, 2010, Paris, France

Charmonium transitions:

- $\checkmark \quad \psi' \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c$
- ✓ Two photon transition: ψ' → γγJ/ψ

Improvements of BEPCII/BESIII

Device	Performance
BEPCII	$1 \times 10^{33} cm^{-2} s^{-1}$
MDC	$\sigma_{p_t}/p_t = 0.5\%, \ dE/dx < 6\%$
TOF	90ps(Bhabha)
EMC	$\sigma_E/E = 2.5\%@1GeV$
MUC	9 barrel + 8 end cap laysers
Magnet	1T Solennoidal

ICHEP 2010

LI Gang

h_c:What's it? What do we know?

- Spin singlet P wave (L=1, S=0)charmonium state
- •potential model spin-spin-interaction tells us:

$$\Delta M_{hf}(1P) = m(h_c) - \frac{1}{9} \left(m(\chi_{c0}) + 3m(\chi_{c1}) + 5m(\chi_{c2}) \right)$$

 $\Delta M_{hf}(1P)
eq 0$: Non-zero spin-spin interaction

- E835: Evidence in $ar p p o h_c o \eta_c \gamma$
- CLEO: Observation in

$$e^+e^- \to \psi(2S) \to h_c\pi^0$$

 $h_c \to \eta_c\gamma$

$$\Delta M_{hf}(1P)$$

= $0.08 \pm 0.18 \pm 0.12 \,\text{MeV}/c^2$

h_c: how we observe it?

- E1-tagged analysis of $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$
- Inclusive analysis of $\psi' \rightarrow \pi^0 h_c$

Performance of BESIII EMC Very important

EMC: 6240 CsI crystals, 28 cm

 $\Delta E/E = 2.5\%$ @1 GeV

 $\sigma z = 0.6 \text{ cm}/\sqrt{E}$

Improve detection: veto backgrounds and add TOF energy Compare MC with data

E1-tagged $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$

 $N(h_c) = 3679 \pm 319$ $M(h_c) = 3525.40 \pm 0.13 \pm 0.18 MeV$ $\Gamma(h_c) = 0.73 \pm 0.45 \pm 0.28 MeV$ < 1.44 MeV @ 90 % CL

First measurement

Consistent with CLEO: $3525.35\pm0.19\pm0.11$ MeV and theoretical prediction.

BW (signal) convolved with Di-Gaussian (reso) + background.

Mass, width and strength of h_c floated.

BG modeled by the π^0 recoil mass spectrum in the sideband of the E1 photon.

Inclusive $\psi' \rightarrow \pi^0 h_c$

First measurement

Br(
$$\psi' \rightarrow \pi^0 h_c$$
) = $(8.4 \pm 1.3 \pm 1.0) \times 10^{-4}$
Br($h_c \rightarrow \gamma \eta_c$) = $(54.3 \pm 6.7 \pm 5.2)\%$

 $N(h_c) = 10353 \pm 1097$

Br(ψ'
$$\rightarrow \pi^0 h_c$$
) x Br($h_c \rightarrow \gamma \eta_c$)
=(4.58±0.40±0.50) ×10⁻⁴
consistent with CLEO:
(4.22±0.44±0.52) ×10⁻⁴

The shape of h_c fixed to that from the fit of E1-tagged

The background parameterized by a 4th-order polynomial.

Short summary of h_c

·		
	BESIII	CLEO
$m[\mathrm{MeV}/c^2]$	$3525.4 \pm 0.13 \pm 0.18$	$3525.8 \pm 0.19 \pm 0.11$
$\Delta_{hf}(1\mathrm{P})[\mathrm{MeV}/c^2]$	$0.10 \pm 0.13 \pm 0.18$	$0.08 \pm 0.18 \pm 0.12$
$\Gamma[{ m MeV}/c^2]$	$(0.73 \pm 0.45 \pm 0.28)$	
	< 1.44(90%CL)	
$Br(\psi' \to h_c \pi^0)$		
$\times Br(h_c \to \gamma \eta_c)[10^{-4}]$	$4.58 \pm 0.40 \pm 0.50$	$4.22 \pm 0.44 \pm 0.52$

→Consistent with CLEO

	BESIII	Theory
$Br(\psi' \to h_c \pi^0)[10^{-4}]$	$8.4 \pm 1.3 \pm 1.0$	$413^{(1)}$
$Br(h_c \to \gamma \eta_c) [\%]$	$54.3 \pm 6.7 \pm 5.2$	$48(NRQCD)^{(1)}$
First Massurament		$88(PQCD)^{(1)}$
First Measurement!		$38^{(2)}$

- (1) Kuang, PRD65, 094042 (2002)
- (2) Godfrey, Rosner, PRD66, 014012 (2002)

$\psi' \rightarrow \gamma \gamma J/\psi$: two photon transition

naive theoretical pictures:

Potential model:

- **Discrete part**:
 double E1 transition via discrete χ_{CJ} (nP)
 (n=1,2) states (virtual and real parts).
 (including main source of the background)
 (well described χ_{CJ} states)
- Relativistic correction:

 Higher order v² operators corrections

Potential model + couple channel:

• Besides discrete contribution, the hadron-loop effect also may play an important role.

Theoretical study is on going. (Z.G. He et al)
2010-6-10 ICHEP 2010 LI Gang

Di-lepton Invariant Mass

Known backgrounds:

- QCD background from ψ ' decay
- QED background from continuum data

Significant enhancement around J/ψ peak

Preliminary Numerical Results

	ee channel	$\mu\mu$ channel
No. of signals	495.8 ± 37.9	615.9 ± 40.9
acceptance	$(7.44 \pm 0.02)\%$	$(9.92 \pm 0.02)\%$
significance	12.5σ	14.3σ
$Br(\psi' \to \gamma \gamma J/\psi)[10^{-3}]$	0.10	0.10
	$1.02 \pm 0.05^{+}_{-}$	$^{-0.19}_{-0.20}(average)$

- Simulation of physics mechanism of signal process under study and not included here
- Possible signal-χ_{CJ}-decay interference not included

Summary

- Some charmonium transitions processes investigate based on 106M ψ ' data at BESIII
 - Observation of hc from $\psi' \to \pi^0$ hc
 - First measurement: $Br(\psi' \rightarrow \gamma h_c)$ & $Br(h_c \rightarrow \gamma \eta_c)$ seperately, as well as the width of h_c
 - ✓ Mass of h_c and Br(ψ ' $\rightarrow \pi^0$ h_c) X Br(h_c $\rightarrow \gamma \eta_c$) consistent with CLEOc's results
 - A significant enhancement of two-photon transition of ½ ' to J/ ½ observed for the first time: significance>10.
 The branching ratio determined by two independent channels to be

$$Br(\psi(2S) \to \gamma \gamma J/\psi) = (1.02 \pm 0.05(\text{stat.})^{+0.19}_{-0.20}(\text{syst.})) \times 10^{-3}.$$

More exciting results, which will improve our knowledge at this energy region, are coming soon.

Thanks!

$\psi' \rightarrow \gamma \gamma J/\psi$: two photon transition

Two-photon transition from ψ ' to J/ ψ :

On experimental side:

- Analogous process to positronium and hydrogen two-photon transition
- CLEO reported Upsilon(3S) \rightarrow rrUpsilon(2S)
- Escaped from experimental measurement

On theoretical side:

- Order α^2 QED transition between two hadrons
- Similar process studied in heavy-light quark system
- Improve understanding of heavy quarkonium characters such as spectrum, decay et al, and the strong interaction
- Testing the hadron-loop effect

Background Components

estimated with MC Simulation and continuum data

- **✓** Branching fractions based on PDG
- \checkmark ψ ' decay bkg. shape and magnitude as the main background description

2010-6-10 ICHEP 2010 LI Gang 15

π ⁰ π ⁰J/ψ Background Validation

simple fit: two Guassian plus 1st-order polynominal assuming right bump comes from $\pi^0 \pi^0 J/\psi$ process

$$\epsilon_{ee}^{\pi^0 \pi^0 J/\psi} = 0.073 \times (1 \pm 0.0083)\%$$

BR: $(16.16 \pm 1.03)\%$

$$\epsilon_{\mu\mu}^{\pi^0\pi^0J/\psi} = 0.114 \times (1 \pm 0.0066)\%.$$

BR: $(16.73 \pm 0.76)\%$

agree well with PDG value: 16.84%

Test Enhancement in Different Box Region

$RM_{\gamma_2}(\mathrm{GeV/c^2})$	$M_{\gamma\gamma}({ m GeV/c^2})$	$Br_{ee} \ (\times 10^{-3})$	$Br_{\mu\mu} \ (\times 10^{-3})$
A (3.43, 3.49)	(0.15, 0.33)	1.17 ± 0.13	1.25 ± 0.11
\mathbf{B} (3.43, 3.49)	(0.33, 0.51)	0.97 ± 0.10	0.79 ± 0.08
c (3.43, 3.46)	(0.15, 0.51)	0.97 ± 0.11	1.04 ± 0.08
D(3.46, 3.49)	(0.15, 0.51)	1.16 ± 0.12	0.98 ± 0.10

- existence of the enhancement is robust
- variation of the measurements in different regions:
 - statistical fluctuation
 - physics mechanism of signal process
- to be included in the systematic uncertainties 2010-6-10 ICHEP 2010 LI Gang

Determination of signal

unbinned maximum likelihood fit with composition of three PDFs:

• **signal** : shape from phase-space-like MC simulation

• ψ (2S) bkg.: shape and magnitude from exclusive MC simulation

• other bkg. : 1st-order polynomial

2010-6-10 ICHEP 2010 LI Jany 18

Calculation of Significance

3.043.063.08 3.1 3.123.143.163.18 3.2 3.223.24

ICHEP 2010

 M_{II} [GeV/c²]

LI Gang

100

2010-6-10

3.043.063.08 3.1 3.123.143.163.18 3.2 3.223.24

 M_{ll} [GeV/c²]

Compilation of Preliminary Systematic Uncertainties

	systematic uncertainties (%)	
	$J/\psi \to ee$	$J/\psi \to \mu \mu$
lepton tracking	-0.7	+1.0
photon detection	± 1.0	± 1.0
photon number cut	+3.8	±1.0
4C KF	+1.1	+1.1
relative branching fraction	$^{+11.3}_{-11.6}$	$^{+12.5}_{-12.8}$
χ_{cJ} decay width	$^{+7.4}_{-5.2}$	$^{+10.5}_{-4.2}$
χ_{cJ} inter-interferences	-4.7	-6.1
background shape	± 0.1	± 0.1
fitting range	$^{+0.9}_{-2.8}$	-5.1
$\psi(2S)$ Total Number	$^{+7.9}_{-7.5}$	$^{+8.7}_{-8.4}$
$Br(J/\psi \to ll)$	± 1.0	± 1.0
total	+15.4	+18.6
- Cotai	-16.7	-17.8

big sources

- ✓ another important source, physics mechanism MC simulation of the signal process, not included yet
- ✓ possible signal- χ_{CJ} decay interference not included