Study of light scalar mesons at BES

Beijiang LIU

The Chinese University of Hong Kong & The University of Hong Kong (for BES Collaboration)

35th International Conference of High Energy Physics July 22-28, 2010 Paris, France

Introduction

• Observation of the charged κ in J/ ψ →K^{*±}K π , using 5.8 X 10⁷ J/ ψ @ BESII.

♦ Direct measurements of $a_0 - f_0$ mixing via $J/\psi \rightarrow \phi f_0 \rightarrow \phi a_0$ and $\chi_{c1} \rightarrow \pi^0 a_0 \rightarrow \pi^0 f_0$, using 2.26X10⁸ $J/\psi \& 1.06X10^8 \psi'@$ BESIII. κ was first found in Kπ scattering data. However, there have been hot debates on its existence.

In recent years: Evidence for κ found in $D^+ \rightarrow K^- \pi^+ \pi^+$ [E791 PRL 89(2002) 121801] $D^+ \rightarrow K^- \pi^+ \mu^+ \nu_{\mu}$ [FOCUS PL B535(2002) 430] $J/\psi \rightarrow K^*(892)^0 K^+\pi^-$ [BESII PL B633(2006) 681] • Kπ s-wave component found in $D^+ \rightarrow K^- \pi^+ e^+ \nu_{e^-}$. [CLEO PR D74(2006) 052001] $\tau \rightarrow K^{0} \, \pi^{-} \nu_{\tau}$, [BELLE PL B654(2007) 65] No evidence of κ found in $D^0 \rightarrow K^- \pi^+ \pi^0$ [CLEO PR D63(2001) 090001]

The existence of charged κ is expected !

- CLEO reported the necessity of $\kappa^{\pm} \to K^{\pm}\pi^0$ in $D^0 \to K^+K^-\pi^0$ [CLEO PRD 74 031108R].
- However, no charged κ is needed in BABAR $D^0 \rightarrow K^+ K^- \pi^0$ data [BABAR PRD 76 011102R].
- BESII studied charged κ in $J/\psi \to K^{*\pm}\kappa^{\mp} \to K_s \pi^{\pm} K^{\mp} \pi^0$

BES2 arXiv:1002.0893

Observation of charged κ at **BESII**

Resonance parameters of charged k

(BW with constant width)

 $(849 \pm 77^{+18}_{-14}) - i(256 \pm 40^{+46}_{-22}) \text{ MeV/c}^2$

For reference, resonance parameters of neutral κ $(841\pm30^{+81}_{-73}) - i(309\pm45^{+48}_{-72}) \text{ MeV/c}^2$ [BESII PL B633(2006) 681]

> Different parameterizations of κ give consistent results on the pole of charged κ .

> The pole position for charged κ is consistent with that for neutral κ within the error.

 $a_0(980) - f_0(980)$ mixing

- a₀ / f₀ : qq, four quarks, K<u>K</u> molecule, hybrids,...
- Study of the mixing of a₀ and f₀ will shed new light on the enigmatic light scalars. No firm experimental determination.
- A narrow peak (8MeV) between the charged and neutral kaon thresholds (987~995 MeV).

J.Wu, Q.Zhao, B.Zou PRD75 114012, C. Hanhart etc. PRD76 074028, J.Wu, B.Zou PRD78 074017

 a_0 (980)– f_0 (980) mixing: f_0 → a_0 transition J/ψ→ ϕf_0 → ϕa_0 → $\phi \eta \pi^0$

BESIII Preliminary

 $N(mixing) = 24.7 \pm 8.6$ (<36.7 @90% C.L) $\operatorname{Br}(J/\psi \to \phi f_0 \to \phi a_0 \to \phi \eta \pi^0)$ $=(3.1\pm1.1\pm0.8)\times10^{-6}$ $(<5.5\times10^{-6} @ 90\% C.L.)$ Mixing intensity: $\xi_{\rm fa} = \frac{{\rm Br}({\rm J}/\psi \to \phi f_0 \to \phi a_0 \to \phi \eta \pi^0)}{{\rm Br}({\rm J}/\psi \to \phi f_0 \to \phi \pi \pi)^{\rm [BESII]}}$ $=(0.6\pm0.2\pm0.2)\%$ (<1.1% @ 90% C.L.)

 $a_{0}(980) - f_{0}(980) \text{ mixing: } a_{0} \rightarrow f_{0} \text{ transition}$ $\psi' \rightarrow \gamma \chi_{c1}, \ \chi_{c1} \rightarrow a_{0} \pi^{0} \rightarrow f_{0} \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$

 $N(mixing)=6.5\pm3.2$ (<12.1 @90% C.L) $|\operatorname{Br}(\psi' \to \gamma \chi_{c1}) \operatorname{Br}(\chi_{c1} \to a_0 \pi^0 \to f_0 \pi^0 \to \pi^+ \pi^- \pi^0)$ $=(2.8\pm1.4\pm0.5)\times10^{-7}$ $(<5.5\times10^{-7} @ 90\% C.L.)$ Mixing intensity: $\xi_{af} = \frac{\operatorname{Br}(\chi_{c1} \to a_0 \pi^0 \to f_0 \pi^0 \to \pi^+ \pi^- \pi^0)}{\operatorname{Br}(\chi_{c1} \to \pi^0 a_0 \to n \pi^0 \pi^0)^{[PDG]}}$ $=(0.3\pm0.2\pm0.1)\%$ (<0.9% @ 90% C.L.)

BESIII

Preliminary

Models of a_0/f_0 give different resonance parameters Comparison with ξ_{fa}/ξ_{af} from those parameters

•The charged κ particle is found in $J/\psi \rightarrow K^{*\pm}K\pi$. The pole position of the charged κ is consistent with that of neutral κ .

• Study the $f_0 \rightarrow a_0$ transition in $J/\psi \rightarrow \phi f_0 \rightarrow \phi a_0$ and the $a_0 \rightarrow f_0$ transition in $\chi_{c1} \rightarrow a_0 \pi^0 \rightarrow f_0 \pi^0$. The mixing intensities are extracted from experiment, which will be very useful for pinning down the resonance parameters of a_0 (980) and f_0 (980).

Thank you

BES II @ BEPC

BES III @ BEPC II

	BESII	BESIII			
MDC	$\sigma(p)/p = 1.78 \% \cdot \sqrt{1 + p^2}$	$\sigma(p_t)/p_t = 0.32 \% \cdot p_t$			
	dE/dx _{reso} = <mark>8</mark> %	dE/dx _{reso} < <mark>6</mark> %			
TOF	180 ps (for bhabha)	90 ps (for bhabha)			
EMC	$\sigma(E)/E = 22\% \cdot \sqrt{E}$	$\sigma(E)/E = 2.3\% \cdot \sqrt{E}$			
MUC	3 layers for barrel	HEP 2010 9 layers for barrel, 8 for endoarp23			

World J/ ψ and ψ (2S) Samples (\times 10⁶)

Partial wave analysis results

TABLE I. $m_{a_0^0(980)}$ (MeV), $m_{f_0(980)}$ (MeV), and coupling constants $g_{a_0\pi\eta}$ (GeV), $g_{a_0K^+K^-}$ (GeV), $g_{f_0K^+K^-}$ (GeV), and $g_{f_0\pi^0\pi^0}$ (GeV) from various models (A–D) and experimental measurements (E–H), and calculated values of $|\xi_{af}|$ and $|\xi_{fa}|$ at $\sqrt{s} = 991.4$ MeV by Eqs. (17) and (18).

No.	Model or experiment	m _a	$g_{a_0\pi\eta}$	$g_{a_0K^+K^-}$	m_f	$g_{f_0\pi^0\pi^0}$	$g_{f_0K^+K^-}$	$ \xi_{fa} $	$ \xi_{af} $
А	$q\bar{q} \mod [14]$	983	2.03	1.27	975	0.64	1.80	0.023	0.010
В	$q^2 \bar{q}^2 \mod [14]$	983	4.57	5.37	975	1.90	5.37	0.068	0.062
С	KK model [18,19,21]	980	1.74	2.74	980	0.65	2.74	0.21	0.15
D	$q\bar{q}g \mod [20]$	980	2.52	1.97	975	1.54	1.70	0.005	0.006
Е	SND [22,23]	995	3.11	4.20	969.8	1.84	5.57	0.088	0.089
F	KLOE [24,25]	984.8	3.02	2.24	973	2.09	5.92	0.034	0.025
G	BNL [26]	1001	2.47	1.67	953.5 [27]	1.36 [27]	3.26 [27]	0.019	0.014
Н	CB [28]	999	3.33	2.54	965 [29]	1.66 [29]	4.18 [29]	0.027	0.023

Complementary study of a₀-f₀ mixing

$$\begin{split} \xi_{fa}(s) &= \frac{|D_{af}|^{2}\Gamma_{\pi\pi}^{a}}{|D_{a}|^{2}\Gamma_{\pi\pi}^{f}} \tag{8} \\ &= \left| \frac{g_{a_{0}^{0}K^{+}K^{-}}g_{f_{0}K^{+}K^{-}}}{g_{a_{0}^{0}}\eta^{0}\eta^{0}g_{f_{0}}\eta^{0}\pi^{0}} \right|^{2} \frac{|\rho_{K^{+}K^{-}}(s) - \rho_{K^{0}\bar{K}^{0}}(s)|^{2}}{3\rho_{\pi\pi}(s)\rho_{\pi\eta}(s)} \\ &\times \frac{1}{|\frac{m_{a}^{2}-s}{\Gamma_{\pi\eta}^{a}\sqrt{s}} - i[|\frac{g_{a_{0}^{0}K^{+}K^{-}}}{g_{a_{0}^{0}\pi^{0}\eta}}|^{2}(\frac{\rho_{K^{+}K^{-}(s)}}{\rho_{\pi\eta(s)}} + \frac{\rho_{K^{0}\bar{K}^{0}}}{\rho_{\pi\eta}}) + 1]|^{2}} \\ \xi_{af}(s) &= \frac{(9)}{d\Gamma_{X \to Ya_{0}^{0}(980) \to Yf_{0}(980) \to Y\pi\pi(s)}}{d\Gamma_{X \to Ya_{0}^{0}(980) \to Y\pi^{0}\eta(s)}}, \tag{10} \\ &= \left| \frac{g_{a_{0}^{0}K^{+}K^{-}}g_{f_{0}K^{+}K^{-}}}{g_{a_{0}^{0}\pi^{0}\eta}} \right|^{2} \frac{(\rho_{K^{+}K^{-}(s)} - \rho_{K^{0}\bar{K}^{0}}(s))^{2}}{3\rho_{\pi\pi}(s)\rho_{\pi\eta}(s)}} \\ &\times \frac{1}{|\frac{m_{f}^{2}-s}{\Gamma_{\pi\pi}^{f}\sqrt{s}} - i[|\frac{g_{f_{0}K^{+}K^{-}}}{g_{f_{0}\pi\pi(s)}}|^{2}(\frac{\rho_{K^{+}K^{-}(s)}}{3\rho_{\pi\pi(s)}} + \frac{\rho_{K^{0}\bar{K}^{0}(s)}}{3\rho_{\pi\pi(s)}}) + 1]|^{2}} . \tag{11}$$