

Dalitz-plot analysis of $B^0 \to \overline{D}{}^0 \pi^+ \pi^-$

Thomas Latham on behalf of the BaBar Collaboration

THE UNIVERSITY OF WARWICK

Motivation

- The $D^0\pi^+\pi^-$ Dalitz plot contains many interesting decays:
 - Colour-suppressed Dh⁰ decays
 - D** contributions
- Knowledge of both helps to test theoretical models, e.g. quark models and QCD sum rules
- BFs of $B \rightarrow D^{**}$ transitions of interest to help address discrepancy between theory and experiment in $B \rightarrow D^{**}/v$ decays
- BFs of $B \rightarrow D\rho$ decays related by isospin can give insight into strong interaction phases
- Can perform a time-dependent analysis to measure sin(2β) and cos(2β) if D is reconstructed in CP eigenstate
 - Requires knowledge of DP structure

PEP-II and BaBar

Analysis Variables – Kinematic

Make use of precision kinematic information from the beams.

23/07/2010

Thomas Latham - ICHEP 2010

Dalitz-plot Analysis

• Dalitz plot is a representation of e.g. the $B \rightarrow PPP$ phase space:

$$m_B^2 + m_i^2 + m_j^2 + m_k^2 = m_{ij}^2 + m_{ik}^2 + m_{jk}^2$$

- A 2D scatter plot in m_{ik}^2 and m_{jk}^2
- Structure in the DP gives information on resonance masses, widths and spins, relative phases, interference etc.
- Model each contribution to the DP as a separate amplitude with a complex coefficient (isobar model)

Analysis Overview

- Reconstruct D^0 candidates in decay to $K^-\pi^+$
- Apply particle ID to pions and D daughters
- Suppress continuum background with a Neural Network of event-shape variables
- Veto $D^*(2010)^-\pi^+$ from the DP (require $m_{D\pi} > 2.02 \text{ GeV/c}^2$)
- Simultaneous fit to m_{ES} , ΔE and DP variables
- Determines signal and background yields plus Dalitz-plot complex coefficients
- Also account for effects of Dalitz-plot dependence of
 - signal reconstruction efficiency
 - fraction and migration of mis-reconstructed signal events
 - background event yields

Backgrounds

- Expect background from continuum light-quark production and from B-decays to a different final state
- Dominated by real $B \rightarrow D$ decays
- B-backgrounds separated into 6 categories depending on m_{ES} and ΔE shapes

Category	Dominant contribution	Total $\#$ Expected
$B\overline{B}$ 1	$J\!/\psiK^+\pi^-$	444 ± 24
$B\overline{B} \ 2$	$a_1^{\pm}\pi^{\mp}$	32 ± 7
$B\overline{B}$ 3	$D^0 K^+ \pi^-$	240 ± 18
$B\overline{B}$ 4	$\overline{D}{}^0 ho^+$	7415 ± 101
$B\overline{B}$ 5	$\overline{D}^{*0}\pi^+$	1475 ± 44
$B\overline{B}$ 6	Combinatoric	7336 ± 99
$\overline{q\overline{q}}$		$\overline{5352} \pm 226$

Signal Dalitz-plot Model

• For the following resonances we use a relativistic Breit-Wigner (RBW) lineshape with a mass-dependent width and Blatt-Weisskopf barrier factors:

 $-D_{0}^{*}(2400)^{-}, D_{2}^{*}(2460)^{-}, \rho(770)^{0}, f_{2}(1270)^{-}$

- Angular distribution described by Zemach tensor formalism
- We also include (as the tail of an RBW) a virtual D*_v(2010)⁻ amplitude – although the narrow D*(2010)⁻ pole is vetoed, off-shell production can contribute
- Nonresonant $D\pi$ S wave exponential form
- $\pi\pi$ S wave is described using the K-matrix formalism

Fit Results – Yields

- Fit yields 5098 ± 102 signal events
- Yields of background categories in line with expectation
- Projections onto m_{ES} and ΔE shown on right
 - Points are data
 - Solid line is fit result
 - Dotted line is continuum background
 - Dashed line is total background
 - Dash/dotted line is signal

Fit Results – Signal Dalitz Plots

- The signal _sPlots for the conventional and square Dalitz plot shown below
- Structures due to $D_2^*(2460)^-$, $\rho(770)^0$ and $f_2(1270)$ are clearly visible
- Square Dalitz plot defined by:

Fit Results – DP Projections

- Projections onto the π⁺π⁻ and Dπ⁻ invariant mass combinations shown on right
- Plots have tighter m_{ES} and ΔE cuts applied to remove background
- Agreement between data and fit is good although some small discrepancies are present

Fit Results – DP Projections

- Projections of the fit onto the helicity angles are shown on the right
- The top [bottom] plot shows the Dπ⁻ [π⁺π⁻] helicity in the region of the D*₂(2460)⁻ [ρ(770)⁰]
- The distributions show the expected shapes for a tensor [vector] resonance
- Regions towards -1 are affected by interference

Systematic Uncertainties

- Systematic uncertainties that affect the signal yield and fit fractions:
 - Fixed shapes of the efficiency and background DP histograms
 - Fixed m_{ES} and ΔE PDF parameters/histograms
 - Fixed fraction of misreconstructed signal events
 Fit bias
- Other systematic uncertainties from data/MC differences in selection requirement efficiency, including NN cut and particle ID

Model Uncertainties

- Uncertainties in signal DP model:
 - Masses and widths of resonances described with RBW shapes
 - Fixed shape parameter of $D\pi$ nonresonant
 - Blatt-Weisskopf barrier radius
- Variations in the model that are considered:
- Gounaris-Sakurai lineshape for ρ (770)⁰
- Replacement of $D\pi$ nonresonant with "dabba"
- Replace $\pi\pi$ S wave K matrix with sum of scalar RBW resonances
- Add other possible resonances, e.g. ω (782), D₁(2600)

See talk by Jose Benitez in spectroscopy session

D. Bugg,

J. Phys. G 36, 075003

Preliminary Branching Fraction Results

Resonance	Fit Fraction	$\mathcal{B}(B^0 \to \mathrm{Mode})$	$\mathcal{B}(B^0 \to \mathrm{Mode})$
	(%)	$\times \mathcal{B}(R \to hh) \ (10^{-4})$	(10^{-4})
Inclusive $B^0 \to \overline{D}{}^0 \pi^+ \pi^-$			$8.81 \pm 0.18 \pm 0.76 \pm 0.78 \pm 0.11$
$D_2^*(2460)^-\pi^+$	$20.5 \pm 0.9 \pm 1.3 \pm 3.7$	$1.80 \pm 0.09 \pm 0.19 \pm 0.37 \pm 0.02$	
$D_0^*(2400)^-\pi^+$	$24.8 \pm 2.5 \pm 3.0 \pm 12.9$	$2.18 \pm 0.23 \pm 0.33 \pm 1.15 \pm 0.03$	
$ ho(770)^0 \overline{D}{}^0$	$33.4 \pm 2.0 \pm 5.2 \pm 10.0$	$2.94 \pm 0.19 \pm 0.53 \pm 0.92 \pm 0.04$	$2.98 \pm 0.19 \pm 0.53 \pm 0.93 \pm 0.04$
$f_2(1270)\overline{D}^0$	$9.8 \pm 1.1 \pm 1.6 \pm 3.4$	$0.86 \pm 0.10 \pm 0.16 \pm 0.31 \pm 0.01$	$1.02 \pm 0.12 \pm 0.18 \pm 0.36 \pm 0.03$
$D_v^*(2010)^-\pi^+$	$15.8 \pm 0.9 \pm 1.2 \pm 3.7$	$1.39 \pm 0.08 \pm 0.16 \pm 0.35 \pm 0.02$	
$D\pi$ nonresonant	$18.4 \pm 2.3 \pm 4.3 \pm 13.6$	$1.62 \pm 0.21 \pm 0.41 \pm 1.21 \pm 0.02$	
K matrix total	$25.6 \pm 2.5 \pm 3.2 \pm 6.1$	$2.26 \pm 0.22 \pm 0.34 \pm 0.58 \pm 0.03$	

 Uncertainties are statistical, systematic, model and, where present, secondary branching fractions

Comparison with Belle

Branching Fraction	Our value (10^{-4})	Belle value (10^{-4})
Inclusive $B^0 \to \overline{D}{}^0 \pi^+ \pi^-$	$8.81 \pm 0.18 \pm 0.76 \pm 0.78 \pm 0.11$	$8.4\pm0.4\pm0.8$
$B^0 \to D_2^*(2460)^- \pi^+ \times D_2^*(2460)^- \to \overline{D}{}^0 \pi^-$	$1.80 \pm 0.09 \pm 0.19 \pm 0.37 \pm 0.02$	$2.15 \pm 0.17 \pm 0.29 \pm 0.12$
$B^0 \to D_0^*(2460)^- \pi^+ \times D_0^*(2460)^- \to \overline{D}{}^0 \pi^-$	$2.18 \pm 0.23 \pm 0.33 \pm 1.15 \pm 0.03$	$0.60 \pm 0.13 \pm 0.15 \pm 0.22$
$B^0 \to \rho(770)^0 \overline{D}{}^0$	$2.98 \pm 0.19 \pm 0.53 \pm 0.93 \pm 0.04$	$3.19 \pm 0.20 \pm 0.24 \pm 0.38$
$B^0 \to f_2(1270)\overline{D}{}^0$	$1.02 \pm 0.12 \pm 0.18 \pm 0.36 \pm 0.03$	$1.20 \pm 0.18 \pm 0.21 \pm 0.32$
$B^0 \to D_v^*(2460)^- \pi^+ \times D_v^*(2460)^- \to \overline{D}{}^0 \pi^-$	$1.39 \pm 0.08 \pm 0.16 \pm 0.35 \pm 0.02$	0.88 ± 0.13
$D\pi$ nonresonant	$1.62 \pm 0.21 \pm 0.41 \pm 1.21 \pm 0.02$	
K matrix total	$2.26 \pm 0.22 \pm 0.34 \pm 0.58 \pm 0.03$	

- Mode has been previously studied by Belle: Phys. Rev. D 76, 012006 (2007)
- Inclusive BF in very good agreement with Belle
- Sub-mode BFs also in good agreement except for $D_v^*\pi^+$ and $D_0^*(2400)^-\pi^+$, where we see larger values
- Direct comparison with S wave components not possible due to different parameterisations

Conclusions

- Performed a Dalitz-plot analysis of $B^0 o \overline{D}{}^0 \pi^+ \pi^-$
- Presented preliminary branching fraction measurements for 7 contributions to the DP
- Inclusive BF and most sub-mode BFs in good agreement with Belle
- BF of D*₀(2400)⁻ π⁺, however, is much larger than Belle result and comparable with D*₂(2400)⁻ π⁺
- Isospin analysis of $B \rightarrow D\rho$ modes indicates presence of non-factorisable final state interaction effects
- Analysis documented in BABAR-CONF-10/004

BACKUP SLIDES

Motivation

- Need precise

 measurements of CKM
 matrix elements using
 different quark level transitions to test the
 Standard Model
- To maximise precision and remove ambiguities measure cos(2β) as well as sin(2β)

Motivation

- Idea to measure sin(2 β) and cos(2 β) in time-dependent Dalitz-plot analysis of $B^0 \rightarrow D_{CP}\pi^+\pi^-$ discussed in outline in
 - J. Charles et al. Phys. Lett. B 425, 375 (1998)
 [Erratum-ibid. B 433, 441 (1998)]
- Idea developed and feasibility study presented in
 - T. Latham and T. Gershon, J. Phys. G 36, 025006 (2009)
- Requires knowledge of contributions to the Dalitz plot
- Best way to determine Dalitz-plot model?
- Look at higher-statistics $D \rightarrow K\pi$ mode
- Can be treated as flavour-specific ⇒ no time-dependence

Analysis Variables – Topological

- Light quark continuum cross section ~3x
- *B* mesons produced almost at rest since just above threshold
- Use event topology to discriminate
- Combine variables in a Neural Network (NN)

Systematic Uncertainties

	Efficiency	$q\overline{q}$	$B\overline{B}$	CR $m_{\rm ES}$ & ΔE	SCF $m_{\rm ES}$ & ΔE	$B\overline{B} m_{\rm ES}$ &	SCF	$q\overline{q} m_{\rm ES}$	Fit bias	Total
		DP PDF	DP PDFs	PDF parameters	PDF parameters	$\Delta E \text{ PDFs}$	fraction	PDF parameters		
Signal yield	6.3	19	24	35	0.7	22	302	2.1	46	310
$D_2^*(2460)^-\pi^+$ FF	0.0018	0.0036	0.0051	0.00072	0.00005	0.0033	0.010	0.00009	0.0037	0.013
$D_0^*(2400)^-\pi^+$ FF	0.003	0.016	0.024	0.00063	0.00013	0.0065	0.00096	0.00011	0.0023	0.030
$\rho(770)^0 \overline{D}{}^0 \text{ FF}$	0.016	0.028	0.031	0.00069	0.00010	0.025	0.0078	0.00023	0.0014	0.052
$f_2(1270)\overline{D}^0$ FF	0.0054	0.0091	0.0077	0.00040	0.00005	0.0078	0.0029	0.00006	0.0011	0.016
$D_v^*(2010)^-\pi^+$ FF	0.00097	0.0028	0.0045	0.00034	0.00004	0.0027	0.0091	0.00007	0.0052	0.012
$D\pi$ NR FF	0.015	0.023	0.022	0.00052	0.00010	0.020	0.015	0.00008	0.0036	0.043
K matrix total FF	0.0057	0.014	0.015	0.00075	0.00017	0.012	0.018	0.00008	0.010	0.032

Model Uncertainties

	Mass &	$D\pi$ NR	BW barrier	$\rho(770)^0 \mathrm{GS}$	$D\pi$ S-wave	$\pi^+\pi^-$ S-wave	
	width	α	radius	lineshape	"dabba"		
Signal yield	44	6.4	11	1.1	14	67	
$D_2^*(2460)^-\pi^+$ FF	0.028	0.0027	0.020	0.00007	0.0019	0.0052	
$D_0^*(2400)^-\pi^+$ FF	0.061	0.031	0.0098	0.00066	0.099	0.043	
$ ho(770)^0 \overline{D}^0 { m FF}$	0.045	0.0056	0.042	0.0010	0.00012	0.034	
$f_2(1270)\overline{D}^0$ FF	0.018	0.00061	0.0060	0.00058	0.0040	0.014	
$D_v^*(2010)^-\pi^+$ FF	0.018	0.0028	0.015	0.00076	0.025	0.0097	
$D\pi$ NR FF	0.10	0.024	0.021	0.0060		0.026	
K matrix total FF	0.023	0.0075	0.010	0.0034	0.038		
	Add $\omega(782)$	Add $\rho(1450)$	Add $D(2600)$	Add $D(2600)$	Add $D(2760)$	7 $B\overline{B}$ Cat.	Total
			(scalar)	(vector)	(vector)		
Signal yield	11	53	0.62	13	1.5	8.4	100
$D_2^*(2460)^-\pi^+$ FF	0.00019	0.0060	0.00026	0.011	0.00063	0.00088	0.037
$D_0^*(2400)^-\pi^+$ FF	0.0019	0.00091	0.0085	0.011	0.0090	0.00034	0.129
$\rho(770)^0 \overline{D}{}^0 \text{ FF}$	0.015	0.047	0.00075	0.050	0.0096	0.0015	0.100
$f_2(1270)\overline{D}^0$ FF	0.00048	0.010	0.00004	0.021	0.0021	0.00050	0.034
$D_v^*(2010)^-\pi^+$ FF	0.0015	0.0095	0.00012	0.0040	0.0016	0.00088	0.037
$D\pi$ NR FF	0.0053	0.045	0.0025	0.065	0.0036	0.0012	0.136
K matrix total FF	0.0070	0.034	0.0019	0.018	0.011	0.00073	0.061

Isospin Analysis

• Isospin symmetry relates $D\rho$ decay amplitudes

$$A(\overline{D}^{0}\rho^{+}) = \sqrt{3}A_{3/2},$$

$$A(D^{-}\rho^{+}) = \sqrt{1/3}A_{3/2} + \sqrt{2/3}A_{1/2},$$

$$\sqrt{2}A(\overline{D}^{0}\rho^{0}) = \sqrt{4/3}A_{3/2} - \sqrt{2/3}A_{1/2}$$

• which gives triangle relation

$$A\left(\overline{D}^{0}\rho^{+}\right) = A\left(D^{-}\rho^{+}\right) + \sqrt{2}A\left(\overline{D}^{0}\rho^{0}\right)$$

• Can be used to determine phase $\delta_{D\rho}$ between $A_{3/2}$ and $A_{1/2}$ amplitudes and the ratio

$$R_{D\rho} = A_{1/2} / \sqrt{2} A_{3/2}$$

• Using our result and the world average results for the other two modes we find

$$\cos \delta_{D\rho} = 0.998^{+0.133}_{-0.062}$$
$$R_{D\rho} = 0.68^{+0.15}_{-0.16}$$