$C P$ Violation and the Determination of the CKM Matrix Frank Porter (Caltech, BABAR)
\square Cabibbo-Kobayashi-Maskawa (CKM) matrix " V "

- Fundamental in Standard Model (SM)
- Four parameters $\left(\theta_{12}, \theta_{13}, \theta_{23}, \phi \leftrightarrow A, \lambda, \rho, \eta\right)$
- Source of $C P$ violation in SM
\square Testing the $\mathrm{SM}-V$ is unitary 3×3 matrix in SM
- Additional generations can make non-unitary
- Can test unitarity relations with measurements of magnitudes and/or phases
\square New physics can show up in loops, often at same order as SM graphs
- Look for differences among quantities that should be the same in SM, or for deviations from SM predictions
\square Scope, with apologies for the many topics left out
- Heavy flavors (s, c, b, t, τ)
- Nothing on EDM
- For neutrino sector (PMNS matrix), see talks by Lisi, Bellerive, Nakaya, and Piquemal
- For β_{s}, like sign di-muon asymmetry, see Borissov's talk [Also Belle (Wicht, 1204)]
- Not much discussion beyond the SM (but an underlying theme)
- For theory, see talk by Isidori (Lattice - Kuramashi)
- Omit CPT tests (see Lusiani, 1173; Kundu, 270)
- Omit future prospects

】 CKM - magnitudes of elements
\square CKM - CP violation

The Cabibbo-Kobayashi-Maskawa mixing matrix

Relates quark mass eigenstates to weak eigenstates.

$$
V=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right)
$$

(Wolfenstein parameterization)
Often define $\bar{\rho} \equiv \rho\left(1-\lambda^{2} / 2\right), \bar{\eta} \equiv \eta\left(1-\lambda^{2} / 2\right)$
\square Magnitudes
\square Phases (i.e., "angles of unitarity triangles")
Determinations assume standard model, but not using unitarity. Inconsistencies could be signs of new physics.

2008 RPP

The magnitudes: $\left|V_{u d}\right| \quad\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)$

$$
\left|V_{u d}\right|=0.97418 \pm 0.00027
$$

Best determinations in superallowed $0^{+} \rightarrow 0^{+}$nuclear β decays. Recent analysis from Hardy and Towner PRC 79 (2009) 055502 yields:

$$
\left|V_{u d}\right|=0.97425 \pm 0.00022
$$

The magnitudes: $\left|V_{u s}\right|$

$$
\left(\begin{array}{lll}
V_{u d} & V_{u c} & V_{u b} \\
V_{c d} & V_{s s c} & V_{c b} \\
V_{t d} & V_{t s t} & V_{t t}
\end{array}\right)
$$

2008 RPP

$$
\begin{aligned}
& \left|V_{u s}\right|=0.2255 \pm 0.0019 \\
& \left|V_{u s}\right| \text { from kaon decays }
\end{aligned}
$$

\square New averages from FlaviaNet Kaon Working Group, arXiv:1005.2323 [hep-ph] (2010), see also KLOE (Archilli, 1085)

- $K_{\ell 3}:\left|V_{u s}\right| f_{+}(0)=0.2163(5)$ or $\left|V_{u s}\right|=0.2254 \pm 0.0013$ with $f_{+}(0)=$ 0.959(5) (lattice, Boyle et al., arXiv1004:0886 (2010))
 with $f_{K} / f_{\pi}=1.193(6)$ (lattice average)
- Combining, obtain $\left|V_{u s}\right|(K)=0.02253 \pm 0.0009$

$\left|V_{u s}\right|$ from tau decays

\square BABAR (Lusiani, 1173) Measure in exclusive τ decays with $467 \mathrm{fb}^{-1}$

$$
\begin{aligned}
& R_{K / \pi} \equiv \frac{\mathcal{B}\left(\tau^{-} \rightarrow K^{-} \nu_{\tau}\right)}{\mathcal{B}\left(\tau^{-} \rightarrow \pi^{-} \nu_{\tau}\right)} \\
& =0.06531 \pm 0.00056 \pm 0.00093 \\
& =\frac{f_{K}^{2}\left|V_{u s}\right|^{2}\left(1-\frac{m_{K}^{2}}{m_{\tau}^{2}}\right)^{2}}{f_{\pi}^{2}\left|V_{u d}\right|^{2}\left(1-\frac{m_{\pi}^{2}}{m_{\tau}^{2}}\right)^{2}}\left(1-\delta_{L D}\right)
\end{aligned}
$$

- Approach avoids absolute strange decay constant $\left(f_{K}^{2}\right)$, replacing with ratio to pion. Use $f_{K} / f_{\pi}=1.189 \pm 0.007$ and $\delta_{L D}=0.0003 \pm 0.0044$
- Result is: $\left|V_{u s}\right|=0.2255 \pm 0.0024$
$\square \tau \rightarrow s$ inclusive
- At ICHEP08, 3.2 σ discrepancy: $\left|V_{u s}\right|=0.2159 \pm 0.0030$
- 2010 preliminary evaluation (Lusiani, 1173) $\left|V_{u s}\right|=0.2165 \pm 0.0023$
- Discrepancy $=3.6 \sigma$
[see also BABAR, Λ_{c} decays (Hartmann, 557)]

$\left|V_{u s}\right|$ summary

Lusiani 1173 (HFAG- τ) compilation, Preliminary

My average $\left|V_{u s}\right|=0.2253 \pm 0.0008$, does not include $\tau \rightarrow s$ inclusive

The magnitudes: $\left|V_{u b}\right| \quad\left(\begin{array}{lll}V_{u d} & V_{u s} & V_{u b} \\ V_{a c} & V_{e s} & V_{b b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)$
2008 RPP $\left|V_{u b}\right|=0.00393 \pm 0.00036$, combined exclusive and inclusive (dominant)
\square Inclusive semileptonic decays $B \rightarrow X \ell \nu$ where $X=X_{u}$

- Select B decays by reconstructing recoil B, either fully or partially
- Huge background from $b \rightarrow c$ transitions ($X=X_{c}$)
- Can restrict kinematic region, e.g., to $m_{X}<m_{D}$
- Can use MM^{2} to preferentially select single missing ν (and low multiplicity)
- Use theory to extrapolate from restricted kinematic region to full phase space

BLNP	PRD 72 (2005) 073006
DGE	arXiv:0806.4524 [hep-ph]
GGOU	JHEP 0710 (2007) 058
ADFR	Eur Phys J C 59 (2009) 831
(and references therein)	

- Belle inclusive (PRL 104 (2010) 021801) on full sample 657M $B \bar{B}$:

TABLE II.	Values for $\left\|V_{u b}\right\|$ with relative errors (in \%).				
Theory	$\left\|V_{u b}\right\| \times 10^{3}$	Stat	Syst	m_{b}	Th.
BLNP [5]	4.37	4.3	4.0	${ }^{+3.1}$	${ }_{-2.7}^{+4.3}$
DGE [6]	4.46	4.3	4.0	${ }_{-3.2}^{+3.2}$	${ }^{+1.0}$
GGOU [7]	4.41	4.3	4.0	1.9	${ }^{+2.5}$

My average Belle inclusive: 0.00441 ± 0.00026 (expt) ± 0.00024 (thy)

$$
\text { Inclusive }\left|V_{u b}\right| \text { (continued) } \quad\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

- BABAR inclusive (Sigamani, 732):

Measure Partial Branching Fractions for $B \rightarrow X_{u} \ell \bar{\nu}$
B tag is via exclusive reconstruction of recoil B in $B \rightarrow \bar{D}^{(*)} h$, where $h=\pi$ or $h=K$ For $p_{\ell}^{*}>1.0 \mathrm{GeV}$, with a 2-D fit to $\left(M_{X}, q^{2}\right)$, and averaging (consistent) results according to (BLNP, DGE, GGOU, ADFR), obtain

$$
\left|V_{u b}\right|=0.00431 \pm 0.00035 \text { (preliminary) }
$$

Background-subtracted lepton momentum distribution in $B \rightarrow X_{u} \ell \bar{\nu}$ decays

$\left|V_{u b}\right|$ in exclusive semileptonic decays

\square Exclusive semileptonic decays to light quark states

- Constraints reduce background, but also lower statistics
- Theory for form factors
E.g., for $B \rightarrow \pi \ell \nu$ with $\ell=e$ or μ, to good approximation a single form factor contributes:

$$
\frac{d \Gamma\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)}{d q^{2} d \cos \theta_{W \ell}}=\left|V_{u b}\right|^{2} \frac{G_{F}^{2} p_{\pi}^{3}}{32 \pi^{3}} \sin ^{2} \theta_{W \ell}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

- Belle (Ha, 944) Exclusive $B^{0} \rightarrow \pi^{-} \ell^{+} \nu$, untagged $605 \mathrm{fb}^{-1} \mathcal{B}\left(B^{0} \rightarrow \pi^{-} \ell \nu\right)=$ $(1.49 \pm 0.04$ (stat) ± 0.07 (syst) $) \times 10^{-4}\left|V_{u b} f_{+}(0)\right|=(9.24 \pm 0.18$ (stat) ± 0.20 (syst) \pm $\left.0.07\left(\tau_{B}\right)\right) \times 10^{-4}\left|V_{u b}\right|=(0.00343 \pm 0.00033)$ (using FNAL-MILC PRD 79 (2009) 054507)
- BABAR (Wulsin, 1180) $B \rightarrow \pi \ell \nu(\rho \ell \nu)$

$$
\begin{aligned}
\mathcal{B}\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu\right) & =(1.41 \pm 0.05 \pm 0.07) \times 10^{-4} \\
\mathcal{B}\left(B^{0} \rightarrow \rho^{-} \ell^{+} \nu\right) & =(1.75 \pm 0.15 \pm 0.27) \times 10^{-4}
\end{aligned}
$$

TABLE XIII: $\left|V_{u b}\right|$ derived from $B \rightarrow \pi \ell \nu$ and $B \rightarrow \rho \ell \nu$ decays for various q^{2} regions and form-factor calculations. Quoted errors are experimental uncertainties and theoretical uncertainties of the form-factor integral $\Delta \zeta$. (Uncertainties for the $B \rightarrow \rho \ell \nu$ form-factor integrals are not available.)

	q^{2} Range $\left(\mathrm{GeV}^{2}\right)$	$\Delta \zeta$ $\left(\mathrm{ps}^{-1}\right)$	$\left\|V_{u b}\right\|$ $\left(10^{-3}\right)$
$B \rightarrow \pi \ell \nu$			
LCSR [15]	$0-16$	5.44 ± 1.43	$3.63 \pm 0.12_{-0.40}^{+0.59}$
HPQCD [22]	$16-26.4$	2.02 ± 0.55	$3.21 \pm 0.17_{-0.36}^{+0.55}$
$B \rightarrow \rho \ell \nu$			
LCSR [16]	$0-16.0$	13.79	2.75 ± 0.24
ISGW2 [14]	$0-20.3$	14.20	2.83 ± 0.24

For $B \rightarrow \pi \ell \nu$ and simult. fit to FNAL/MILC lattice, $\left|V_{u b}\right|=0.00295 \pm 0.00031$
My average for $B A B A R \pi \ell \nu$, including error for spread: $\left|V_{u b}\right|=0.00326 \pm 0.00054$

$V_{u b}$ in leptonic B decays

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

For $Q_{q}^{+}=\pi^{+}, K^{+}, D^{+}, D_{s}^{+}, B^{+}$, with $V_{(Q q)}=V_{Q q}$ or $V_{q Q}$ as appropriate:

$$
\Gamma\left(Q_{q}^{+} \rightarrow \ell^{+} \nu_{\ell}\right)=\frac{G_{F}^{2}}{8 \pi} m_{Q_{q}}^{3}\left(\frac{m_{\ell}}{m_{Q_{q}}}\right)^{2}\left(1-\frac{m_{\ell}^{2}}{m_{Q_{q}}^{2}}\right)^{2}\left|V_{(Q q)}\right|^{2} f_{Q_{q}}^{2},
$$

\square Belle $711 \mathrm{fb}^{-1}$ (Stypuła, 1097) $B \rightarrow \tau \nu$ (and $\left.B \rightarrow D^{*} \tau \nu\right)$; exclusive semileptonic tag measure $f_{B}\left|V_{u b}\right|=\left(9.3_{-1.1}^{+1.2} \pm 0.9\right) \times 10^{-4} \mathrm{GeV}$, from $\mathcal{B}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)=\left(1.54_{-0.37}^{+0.38}(\text { stat })_{-0.31}^{+0.29}(\right.$ syst $\left.)\right) \times$ 10^{-4} (significance 3.6σ) Gives $\left|V_{u b}\right|=0.00489 \pm$ 0.00079 for $f_{B}=0.19 \mathrm{GeV}$
$E_{\mathrm{ECL}}=$ residual energy in calorimeter

$\square \operatorname{BABAR}$ (De Nardo, 581) $\mathcal{B}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)=\left(1.80_{-0.54}^{+0.57}(\right.$ stat $) \pm 0.26($ syst $\left.)\right) \times 10^{-4}$, significance 3.6σ
Combine with semileptonic tags: $\mathcal{B}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)=(1.76 \pm 0.49) \times 10^{-4}$

$$
\left|V_{u b}\right| \text { summary }
$$

Recent measurements

Measurement	Experiment	$V_{u b}$
Inclusive	Belle	0.00441 ± 0.00024
Inclusive	$B A B A R$	0.00431 ± 0.00035
Exclusive $\pi \ell \nu$	Belle	0.00343 ± 0.00033
Exclusive $\pi \ell \nu$	BABAR	0.00326 ± 0.00054
$B \rightarrow \tau \nu$	Belle	0.00484 ± 0.00079
$B \rightarrow \tau \nu$	$B A B A R$	0.0057 ± 0.0019

Longstanding inclusive/exclusive discrepancy remains. For example, comparing Belle inclusive with Belle exclusive the difference is 2.3σ
\square CKMfitter average $\left|V_{u b}\right|=0.00392 \pm 0.00009 \pm 0.00045$ (based on HFAG end of 2009 preliminary)

First row unitarity

In SM (V is 3×3 unitary), must have:

$$
\begin{aligned}
1 & =\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2} \\
& =0.99995 \pm 0.00057
\end{aligned}
$$

Limit (Bayesian) on possible 4th generation:

$$
\begin{aligned}
\left|V_{u 4}\right| & =\sqrt{1-\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}} \\
& <0.031\left(90 \% \text { CL, flat prior in }\left|V_{u 4}\right|^{2}\right) \\
& <0.061\left(90 \% \text { CL, flat prior in }\left|V_{u 4}\right|\right)
\end{aligned}
$$

In spite of "four-nines" sum, numbers from first two generations not sufficiently precise to require the third generation

$$
\text { The magnitudes: }\left|V_{c d}\right| \quad\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c c} & V_{c s} & V_{c b} \\
V_{d d} & V_{t s} & V_{t b}
\end{array}\right)
$$

2008 RPP remains up-to-date $\quad\left|V_{c d}\right|=0.230 \pm 0.011$
\square From neutrino charm production (di-muons/single muons, CDHS, CCFR, CHARM II + CHORUS)
\square Prospects for leptonic and semileptonic D (and D_{s} for $\left|V_{c s}\right|$) to contribute, once theoretical uncertainties in decay constants and form factors are reduced further. (see also Melikhov 254)

$$
\text { The magnitudes: }\left|V_{c s}\right| \quad\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

RPP 2008: Leptonic D_{s} decays; semileptonic D decays

$$
\left|V_{c s}\right|=1.04 \pm 0.06
$$

The magnitudes: $\left|V_{c b}\right|$
 $$
\left(\begin{array}{ccc} V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b} \end{array}\right)
$$

$2008 \mathrm{RPP} \quad\left|V_{c b}\right|=0.0412 \pm 0.0011$ (combined exclusive and inclusive)
\square New results in exclusive $B \rightarrow$ charm

- Belle (Dungel, 943) New result for $B^{0} \rightarrow D^{*-} \ell^{+} \nu$, signal side reconstructed, 711 fb^{-1}

$$
\mathcal{F}(1)\left|V_{c b}\right|=0.0345 \pm 0.0002 \pm 0.0010
$$

$\mathcal{F}(1)$ is the hadronic form factor at zero recoil ($w=v_{B} \cdot v_{D}^{*}=1$) Use HQET (Caprini, Lellouch, Neubert NPB 530 (1998) 153) for w-dependence of form factor. Lattice QCD (Bernard et al., PRD 79 (2009) 014506): $\mathcal{F}(1)=0.921 \pm 0.013 \pm 0.020$

$$
\left|V_{c b}\right|=0.0375 \pm 0.0015
$$

- BABAR (Petrella, 1179) [PRL 104 (2010) 011802] $B \rightarrow D \ell \nu$, fully reconstructed tags (average of charged and neutral D modes)

$$
G(1)\left|V_{c b}\right|=0.0423 \pm 0.0019 \pm 0.0014
$$

$G(1)$ is the hadronic form factor at zero recoil $\left(w=v_{B} \cdot v_{D}=1\right)$

$$
V_{c b}=0.0392 \pm 0.0018 \pm 0.0013 \pm 0.0009 \text { (lattice) }
$$

Lattice form factor: Okamoto et al., NucPhysB 140 (2005) 461

$$
\text { The magnitudes: }\left|V_{c b}\right| \quad\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

\square New results in inclusive $B \rightarrow$ charm

- BABAR (Petrella, 1179) [PRD 81 (2010) 032003] Measurement and Interpretation of Moments in Inclusive Decays $B \rightarrow X_{c} \ell \nu$ Rates and Moments analysis of inclusive $B \rightarrow X_{c} \ell \nu$, based on (OPE) Benson, Bigi, Mannel, Uraltsev, NP B665 (2003) 367

$$
\left|V_{c b}\right|=0.04205 \pm 0.0045 \pm 0.0070
$$

\square As with $\left|V_{u b}\right|$ the inclusive results tend to be higher than the exclusive results
\square CKMfitter average $\left|V_{c b}\right|=0.04089 \pm 0.00038 \pm 0.00059$ (based on HFAG end of 2009 preliminary)

The magnitudes: $\left|V_{t d}\right|$

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

2008 RPP

$$
\left|V_{t d}\right|=0.0081 \pm 0.0006
$$

$\square\left|V_{t d}\right|$ from B mixing

- Uncertainty dominated by lattice QCD uncertainties.
- Some uncertainty cancels in ratio $\left|V_{t d} / V_{t s}\right|$, measured using B and B_{s} mixing:

$$
\left|V_{t d} / V_{t s}\right|=0.209 \pm 0.001 \pm 0.006(2008 \mathrm{RPP})
$$

- Using this, and $\left|V_{t s}\right|$ obtain slightly more precise result: $V_{t d}=0.0081 \pm 0.0005$
$\square B A B A R$ (Bard, 1177) Another approach: Measure $\left|V_{t d} / V_{t s}\right|$ in "inclusive" ratio of radiative B decays related by $d \leftrightarrow s$ with $471 \mathrm{M} B \bar{B}$
- Penguin decays, so possible NP in loop, hence tests SM in comparison with other determination
- For example, compare $B^{0} \rightarrow \pi^{+} \pi^{-} \gamma$ with $B^{0} \rightarrow K^{+} \pi^{-} \gamma$. Analysis uses 7 such pairs of modes.
- Result is

$$
\frac{\mathcal{B}(b \rightarrow d \gamma)}{\mathcal{B}(b \rightarrow s \gamma)}=0.033 \pm 0.009 \pm 0.003
$$

from which we obtain (using (NLO) Ali, Asatrian Greub PLB 429 (1998) 87):

$$
\left|V_{t d} / V_{t s}\right|=0.199 \pm 0.022 \text { (stat) } \pm 0.024 \text { (syst) } \pm 0.002 \text { (thy) }
$$

$$
\text { The magnitudes: }\left|V_{t s}\right| \quad\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

$\left|V_{t s}\right|$ from B_{s} mixing
2008 RPP

$$
\left|V_{t s}\right|=0.0387 \pm 0.0023
$$

Dominant uncertainties from lattice QCD

The magnitudes: $\left|V_{t b}\right|$

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

2008 RPP

$$
\begin{gathered}
\left|V_{t b}\right|>0.7490 \% \mathrm{CL}, \sigma(p \bar{p} \rightarrow t X) \\
\left|V_{t b}\right|=0.77_{-0.24}^{+0.18} \mathrm{EW} \text { fit, top loops in } Z \rightarrow b \bar{b}
\end{gathered}
$$

Can be measured in single top production, without assuming 3 generation unitarity (but assuming $\left|V_{t b}\right| \gg\left|V_{t d}\right|,\left|V_{t s}\right|$)

- CDF /D0 (Quinn, 1132) arXiv:/0908.2171 [hep-ex] Combined CDF(3.2 $\left.\mathrm{fb}^{-1}\right) \& \mathrm{D} 0\left(2.3 \mathrm{fb}^{-1}\right)\left|V_{t b}\right|=0.88 \pm 0.07$
$C P$ violation, the unitarity triangles $\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)$

All CP violation from CKM in SM

Manifests as "unitarity triangle" relations with area $\neq 0$

$$
V V^{\dagger}=V^{\dagger} V=1
$$

\square Yields six distinct relations from the off-diagonal components. Two of these are under active investigation:

$$
\begin{gathered}
0=V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=O\left(\lambda^{3}\right)+O\left(\lambda^{3}\right)+O\left(\lambda^{3}\right) \\
V_{\mathrm{ud}} \mathrm{~V}_{\mathrm{ub}}^{*} \overbrace{\mathrm{~cd} / \phi_{2}}^{\gamma / \mathrm{Q}_{\mathrm{c}}} \mathrm{~V}_{\mathrm{cd}} \mathrm{~V}_{\mathrm{tb}}^{*} \\
0=V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=O\left(\lambda^{4}\right)+O\left(\lambda^{2}\right)+O\left(\lambda^{2}\right) \\
\mathrm{V}_{\mathrm{us}} \mathrm{~V}_{\mathrm{ub}}^{*} \frac{\alpha_{\mathrm{s}}}{\mathrm{~V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}}^{*}} \mathrm{~V}_{\mathrm{cs}} \mathrm{~V}_{\mathrm{cb}}^{*}
\end{gathered} \beta_{\mathrm{s}} .
$$

The angles: β / ϕ_{1}

RPP $2008 \sin 2 \beta=0.681 \pm 0.025, b \rightarrow c \bar{c} s$ decays to $C P$ eigenstates
\square Belle (Higuchi, 1094) Analysis of $\sin 2 \phi_{1}$ in $B \rightarrow c \bar{c} K^{0}$ [ie, the "golden modes"] on final data sample of $772 \mathrm{M} B \bar{B}$, in progress; expected error $\delta\left(\sin 2 \phi_{1}\right) \approx 0.024$.
$\square B A B A R$ (Latham, 559) BaBar Dalitz-plot analysis of $B^{0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}$Understanding time-dependent DP for $B^{0} \rightarrow D_{C P} \pi^{+} \pi^{-}$towards measurement of $\sin 2 \beta$ and $\cos 2 \beta$. Preliminary BFs presented.
\square Belle (Higuchi, 1094) Time-dependent Dalitz plot analysis of $B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}(b \rightarrow$ $s s \bar{s}$ penguin)

- Find four solutions; preferred solution yields

$$
\begin{aligned}
\phi_{1}^{\mathrm{eff}}\left(\phi(1020) K_{S}^{0}\right) & =(32.2 \pm 9.0 \pm 2.6 \pm 1.4(\mathrm{DP} \text { model }))^{\circ} \\
\phi_{1}^{\mathrm{eff}}\left(f_{0}(980) K_{S}^{0}\right) & =(31.3 \pm 9.0 \pm 3.4 \pm 4.0(\mathrm{DP} \text { model }))^{\circ}
\end{aligned}
$$

Consistent with $\phi_{1}^{\text {eff }}=\phi_{1}$

(ϕ mass region)
$\sin 2 \beta$ from the $b \rightarrow c \bar{c} s$ "golden" modes
Compare with Penguin modes
$\sin (2 \beta) \equiv \sin \left(2 \phi_{1}\right)$

HFAG | FPCP 2009 |
| :--- |
| PRELIMINARY |

$\mathrm{b} \rightarrow \mathrm{ccs} \mathbf{C}_{\mathrm{CP}}$

$$
\begin{aligned}
& \sin \left(2 \beta^{\text {eff }}\right) \equiv \sin \left(2 \phi_{1}^{\text {eff }}\right) \underset{\substack{\text { frPCP } 2010}}{\mathrm{HFAG}}
\end{aligned}
$$

NP in loop can give rise to deviations from β / ϕ_{1}

The angles: Measuring α / ϕ_{2}

RPP $2008 \quad \alpha=\left(88_{-5}^{+6}\right)^{\circ}$ from $B \rightarrow \pi \pi, \rho \rho, \rho \pi$
\square Measure in $b \rightarrow u \bar{u} d$

- E.g., $B \rightarrow \pi^{+} \pi^{-}, \rho^{+} \rho^{-}, \pi^{+} \pi^{-} \pi^{0}, a_{1}^{ \pm} \pi^{\mp}$
- Penguin contributions (involving different CKM phase) complicate analysis. Isospin analysis permits isolation of tree amplitude [Gronau and London, PRL 65 (1990) 3381]

CKMfitter input: $\left(88.2_{-4.8}^{+6.1}\right)^{\circ}$

UTfit input: $(91.4 \pm 6.1)^{\circ}$

The angles: Measuring γ / ϕ_{3}

$$
\gamma \equiv \arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right)
$$

Accessible in interference between $b \rightarrow c \bar{u} s\left(O\left(\lambda^{3}\right)\right)$ and $b \rightarrow u \bar{c} s\left(O\left(\lambda^{3}\right)\right.$, colorsuppressed) amplitudes. A suitable pair of channels is $B^{-} \rightarrow D^{(*) 0} K^{-}$and $B^{-} \rightarrow$ $\bar{D}^{(*)} K^{-}$, where interference may occur when the D and \bar{D} decay to common final states.

Compare B^{-}and B^{+}
Various approaches ($D^{0} \bar{D}^{0}$ mixing is neglected):

The angles: Measuring γ / ϕ_{3} (GLW)

GLW (Gronau, London, Wyler): Uses D, \bar{D} decays to $C P$ eigenstates, eg, $K^{+} K^{-}$or $K_{S} \pi^{0}$. In this case, both D and \bar{D} decays are Cabibbo suppressed.

\square BABAR (Martinez-Vidal, 1175) Preliminary $B^{ \pm} \rightarrow D_{C P} K^{ \pm}$, with $D_{C P+} \rightarrow \pi^{-} \pi^{+}, K^{-} K^{+}$ and $D_{C P-} \rightarrow K_{S}^{0} \pi^{0}, K_{S}^{0} \phi, K_{S}^{0} \omega$:

	$\gamma \bmod 180\left[^{\circ}\right]$	r_{B}
$68 \% \mathrm{CL}$	$[11.3,22.7]$	$[0.24,0.45]$
	$[80.9,99.1]$	
	$[157.3,168.7]$	
$95 \% \mathrm{CL}$	$[7.0,173.0]$	$[0.06,0.51]$

The angles: Measuring γ / ϕ_{3} (ADS)

ADS (Atwood, Dunietz, Soni): Use $D^{0} \rightarrow K^{+} \pi^{-}$(doubly Cabibbo suppressed); $\bar{D}^{0} \rightarrow$ $K^{+} \pi^{-}$(Cabibbo favored), giving interfering amplitudes of similar order, although branching fractions are small.
\square BABAR (Martinez-Vidal, 1175) $B^{-} \rightarrow D^{(*)} K^{-} r_{B}=\left(9.5_{-4.1}^{+5.1}\right) \%, r_{B}^{*}=\left(9.6_{-5.1}^{+3.5}\right) \%$.

The angles: Measuring γ / ϕ_{3} (GGSZ)

GGSZ (Giri, Grossman, Soffer, Zupan): Look at the Dalitz plot for three-body D decays, eg, $D \rightarrow K_{S} \pi^{+} \pi^{-}$. This mode is Cabibbo favored for both D^{0} and \bar{D}^{0}.
\square Belle (Joshi, 1096) PRD 81 (2010) 112002 Dalitz Plot analysis $B \rightarrow D^{(*)} K, D \rightarrow K_{S} \pi^{+} \pi^{-}$ (Cabibbo allowed; large strong phases; need Dalitz plot analysis) $B \rightarrow D K \rightarrow K_{S} \pi^{+} \pi^{-}$ $657 \mathrm{M} B \bar{B} \quad m_{ \pm}=m\left(K_{S} \pi^{ \pm}\right)$

$\phi_{3}(\bmod 180)=\left[78.4_{-11.6}^{+10.8} \pm 3.6(\text { syst }) \pm 8.9(\text { model })\right]^{\circ} \quad r_{B}=\left|\frac{A(b \rightarrow u)}{A(b \rightarrow c)}\right|=0.160_{-0.38}^{+0.40}(D K)$
P-value for $C P$ conservation is $5 \times 10^{-4}\left(\right.$ combined $\left.B^{ \pm} \rightarrow D^{(*)} K^{ \pm}\right)$
\square
BABAR (Martinez-Vidal, 1175) $B^{\mp} \rightarrow D^{(*)} K^{(*) \mp}$ exclude $\gamma=0$ at 3.5σ
$\gamma(\bmod 180)=[68 \pm 14 \pm 4(\text { syst }) \pm 3(\operatorname{model})]^{\circ}$
$r_{B}=0.096 \pm 0.029$

Understanding D decays

We have seen that measuring γ / ϕ_{3} is intimately connected with D decays; motivated to understand D decays to reduce model dependence. CLEOc (Wilkinson, 702) use quantum correlations at $\psi(3770) \rightarrow D^{0} \bar{D}^{0}$ to measure strong phase differences between $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$ ($818 \mathrm{pb}^{-1}$). Updated analysis; new analysis of $K_{S} K^{+} K^{-}$. Idea is can tag D eigenstate (either flavor or $C P$), eg, with tag D going to $C P$ eigenstate such as $K^{+} K^{-}(C P$-even $)$, hence signal $D \rightarrow$ $K_{S} \pi^{+} \pi^{-}$is $C P$-odd D state.
c_{i} and s_{i} are cosines and sines of strong $D-\bar{D}$ decay phase differences, averaged over bin i

Searches for new physics in $C P$ violation

$\square C P$ violation in B decays

- Belle (Higuchi, 1094) Direct $C P$ in $B^{+} \rightarrow J / \psi K^{+}$
- Belle (Sahoo, 969) New result for time-dependent $C P$ analysis of $B^{0} \rightarrow \phi K_{S} \gamma$
$\square C P$ violation in D mixing and decay
- BABAR (Bellis, 1172) $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and $D^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$Dalitz plot analysis
- Belle (Ko, 1092) CP violation in $D \rightarrow K_{S}\left(\pi, K, \eta, \eta^{\prime}\right)$ and $D_{(s)} \rightarrow \phi \pi$
- CDF (Mattson, 1082) CP violation in $D^{0} \rightarrow h^{+} h^{-}$
$\square C P$ violation in kaons
- KEK E391a (Watanabe, 734) Final results on $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$
- NA48 (Winhart, 1080) $C P$ measurements in $K^{ \pm} \rightarrow \pi \ell^{+} \ell^{-}$and $K_{S} \pi \pi e e$ decays
$\square C P$ violation in τ decays
- Belle (Shapkin, 1093) CP violation in $\tau^{ \pm} \rightarrow K_{S} \pi^{ \pm} \nu_{\tau}$

The global fits

\square Both UTfit (Tarantino, 1081) and CKMfitter (T'Jampens, 190) identify $\sin 2 \beta(2.6 \sigma / 2.6 \sigma)$ and $\mathcal{B}(B \rightarrow \tau \nu)(3.2 \sigma / 2.8 \sigma)$ as areas of discrepancy.

- UTfit in addition mentions ϵ_{K} as discrepant by 1.7σ.
- Global consistency from CKMfitter at 2σ

Characterizing the discrepancy

\square Two-dimensional value of $(\sin 2 \beta, \mathcal{B}(B \rightarrow \tau \nu))$ in conflict with $B_{B_{d}}, \alpha, \gamma$ constraints.

\square What is it? Could be...

- Measurement error
- Lattice error
- New physics

See also (Soni, 908)

The B_{s} sector

UTfit with new D0 results (awaiting CDF likelihood), 3.1σ from SM in $\phi_{B_{s}}$ (but new CDF result should pull it closer to SM).

Conclusions

$$
|V|=\left(\begin{array}{ccc}
0.97418 \pm 0.00027 & 0.2253 \pm 0.0008 & 0.00392 \pm 0.00046 \\
0.230 \pm 0.011 & 1.04 \pm 0.06 & 0.0409 \pm 0.0007 \\
0.0081 \pm 0.0005 & 0.0387 \pm 0.0023 & 0.88 \pm 0.07
\end{array}\right)
$$

\square Still plenty of room for a fourth generation.

ICHEP 2010 averages (assuming 3×3 unitarity, SM)		
A	CKMfitter, ICHEP10	UTfit, ICHEP10
λ	$0.812_{-0.013}^{+0.013}$	
$\bar{\rho}$	0.22543 ± 0.00077	
$\bar{\eta}$	0.144 ± 0.025	0.132 ± 0.020
$\alpha\left({ }^{\circ}\right)$	$0.342_{-0.015}^{+0.016}$	0.358 ± 0.012
$\sin 2 \beta$	91.0 ± 3.9	
$\gamma\left({ }^{\circ}\right)$	$0.689_{-0.021}^{+0.023}$	
	67.2 ± 3.9	

Warning: errors may not scale as normal errors; see references.

睢
Some " 2σ " hints
τ to s inclusive puzzle
Exclusive vs inclusive differences for $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$
$\sin 2 \beta$ and $B \rightarrow \tau \nu$ discrepancy with SM
Like sign dimuon discrepancy with SM
Heavy flavors will continue to offer insights/constraints on possible new physics [LHC, high intensity kaons, super B factories, tau/charm threshold]

