Rare B decays

at B factories

Karim Trabelsi KEK, IPNS July 27, 2010

35th International Conference on High Energy Physics July 22-28, 2010, Paris

Outline

Rare and beautiful...

Radiative/EW decays

- 1. $B \rightarrow X_s \gamma$ 2. $B \rightarrow X_{s, d} \gamma$ 3. $B \rightarrow K^{(*)} l^+ l^-$ 4. $B \rightarrow X_s l^+ l^-$ 5. $B^+ \rightarrow K^+ \tau^+ \tau^-$ 6. $B \rightarrow \gamma \gamma$
- Tauonic decays 7. $B \rightarrow \tau \gamma$
 - 8. $B \rightarrow D^{(*)} \tau v$

 $\begin{array}{c} Exotic \ decays \\ 9. \ B^+ \rightarrow D^- l^+ l^+ \end{array}$

Charmless had decays 10. $B \rightarrow \eta' h$ 11. $B \rightarrow X_s \eta$

at Y(5S)12. rare B_s

. . .

Rare B: large samples needed

~14M B_s also ! ($\gamma(5S)$ runs)

Radiative and Electroweak Penguin Decays

Radiative and Electroweak Penguin Decays are Flavor Changing Neutral Currents (FCNC) occuring in the Standard Model only at the **loop** level

- ⇒ high sensitivity to New Physics (NP) (can appear in the loop with size comparable to leading SM contributions)
- ⇒ Complementary to the direct production of new particles expected at LHC

Huge datasets collected at the two B-factories, BaBar and Belle, have made it possible to explore precisely these decays in **exclusive** channels and **inclusive** measurements

NNLO SM calculation: $B_{SM}(B \rightarrow X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}$ (for $E_{\gamma} > 1.6$ GeV) M.Misiak et al. PRL 98, 022002 (2007) (see also talk of Soumitra Nandi) Charged Higgs (2HDM Type II) bound

The lower γ energy threshold the smaller the model uncertainties in SM, but the larger background in measurement

$B \rightarrow X_s \gamma$ spectrum

PRL 103, 241801 (2009)

$B(B \rightarrow X_s \gamma) = (3.45 \pm 0.15 \pm 0.40) \times 10^{-4} \text{ (for } E_{\gamma} > 1.7 \text{ GeV})$

- Most precise measurement of $B(B \rightarrow X_s \gamma)$ (lowest E_{γ} threshold)
- $\circ~$ Crucial input for global fit to extract $|\,V_{ub}\,|$ and $B\!\rightarrow\!X_s\,\gamma$ decay rate (see Florian Bernlochner's talk)
- *B* is given for E_{γ} thresholds: 1.7, 1.8, 1.9, 2.0 GeV
- Systematic error is dominated by off-resonance subtraction !

 $\mathbf{B} \rightarrow \mathbf{X}_{s} \boldsymbol{\gamma}$

HFAG 2010: $B(B \rightarrow X_s \gamma) = (3.55 \pm 0.26) \times 10^{-4}$ (for $E_{\gamma} > 1.6 \text{ GeV}$) vs SM: $B(B \rightarrow X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}$ (for $E_{\gamma} > 1.6 \text{ GeV}$)

 \Rightarrow 2 orders of magnitude smaller than $b \rightarrow s\gamma$ but rich NP search potential

may interfere w/ contributions from NP

Many observables:

- Branching fractions
- $\circ~$ Isospin asymmetry $(\mathbf{A}_{\mathrm{I}})$
- $\circ~$ Lepton forward-backward asymmetry $(\mathbf{A}_{\mathrm{FB}})$

 $(many \ other \ observables: \ Tobias \ Hurth's \ talk)$

 $\Rightarrow Exclusive (B \rightarrow K^{(*)}l^+l^-), Inclusive (B \rightarrow X_s l^+l^-)$

Exclusive \mathbf{B} \rightarrow \mathbf{K} \mathbf{l}^+ \mathbf{l}^- and \mathbf{B} \rightarrow \mathbf{K}^* \mathbf{l}^+ \mathbf{l}^-

 $K = K^+ \text{ or } K^0_S$, $K^* = K^{*0} \rightarrow K^+ \pi^-$, $K^{*+} \rightarrow K^0_S \pi^+$, $K^+ \pi^0$, $l = e \text{ or } \mu$

Various observables: Forward-backward asymmetry, F_L, isospin, lepton flavor...

b \rightarrow **s** γ , **sl**⁺**l**⁻ **and Wilson coefficients**

NP effects can be parameterized as deviations from SM in Wilson coefficients $C_{7,} C_{9,} C_{10}$: $C_i = C_i^{SM} + C_i^{NP}$

 $b \rightarrow s \gamma$ (sensitive to $|C_7|$ only)

$$B(b \to s\gamma) = \frac{G_F^2 \alpha_{em} m_b^5 |V_{ts}^* V_{tb}|^2}{32\pi^4} |C_7^{eff}|^2 + corr.$$

 $b \rightarrow s l^+ l^-$ (sensitive to C_7 sign, $C_{9} C_{10}$)

$$\begin{aligned} \frac{d\Gamma(b \rightarrow sl^{+}l^{-})}{dq^{2}} &= \left(\frac{\alpha_{em}}{4\pi}\right)^{2} \frac{G_{F}^{2}m_{b}^{5}|V_{ts}^{*}V_{tb}|^{2}}{48\pi^{3}} (1-q^{2})^{2} \\ &\times \left[(1+2q^{2})(|C_{9}^{eff}|^{2}+|C_{10}^{eff}|^{2})+4(1+\frac{2}{q^{2}})|C_{7}^{eff}|^{2}+12\operatorname{Re}(C_{7}^{eff}C_{9}^{eff})]+\operatorname{corr.} \end{aligned}$$

Inclusive differential branching fraction is sensitive to Wilson coefficients (no form factor uncertainties of $B \! \rightarrow \! K^* l^+ l^-)$

Opposite-sign C₇ **makes the branching fraction larger** (in SM, $C_7 < 0$ and $C_9 > 0$)

$\underline{\mathbf{B} \to \mathbf{X}_{\mathbf{s}} \mathbf{l}^+ \mathbf{l}^-}$

Full inclusive measurement is not feasible so far, sum-of-exclusive technique has been used by Belle/BaBar

see Cheng-Chin

Chiang's talk

 X_s reconstructed by: 1 (K[±] or K_s) + 4 π 's (N $\pi^0 \le 1$) (36 modes)

⇒ Belle (657 MB \overline{B}), preliminary (previous 152 MB \overline{B})

Combinatorial BG (semi-leptonic B decays, continuum)

Self Cross-Feed

Peaking BG $B \rightarrow X_s \pi^+ \pi^-$ (double mis-id), leakage from J/ψ and ψ' veto, charmonium higher resonances...

$B(B \rightarrow X_{s}l^{+}l^{-}) = (3.33 \pm 0.80^{+0.19}_{-0.24}) \times 10^{-6}$

 $[q^2{>}0.2~GeV^2/c^4$, extrapolated for J/ψ , ψ ', and $M(X_s){>}2.0~GeV]$

HFAG average: $B = (3.66^{+0.76}_{-0.77}) \times 10^{-6}$ SM (Ali et al): $B_{SM} = (4.2 \pm 0.7) \times 10^{-6}$ SM (Gambino et al): $B_{SM} = (4.4 \pm 0.7) \times 10^{-6}$ PRL 94, 061803 (2005)

q^2 spectrum in $B \rightarrow X_s l^+ l^-$

⇒ No branching fraction enhancement in this region strongly disfavor the case with the flipped sign of C₇ (other less extreme NP possibilities are still allowed)

 \circ rate can be **enhanced by NP** (NMSSM rate could be $\propto (M_{\tau}^2/M_{\mu}^2) \sim 280)$ $\circ B^+ \rightarrow K^+ \tau^+ \tau^-$ is $\sim 50 \,\%$ of total inclusive rate

First search (preliminary)
468M BB
Hadronic tag (ε ~ 0.2%)
τ→eνν, μνν, πν (2-4 neutrinos in the final state)

 $B(B^+ \to K^+ \tau^+ \tau^-) < 3.3 \times 10^{-3} @ 90\%$ C.L.

$\mathbf{B}_{\mathbf{d}} \to \boldsymbol{\gamma} \boldsymbol{\gamma}$

see Kevin Flood's talk

$$\begin{split} B_{SM} &\sim 3 \times 10^{-8} \\ \text{Bosch and Buchalla} \\ \text{JHEP 0208:054 (2002)} \\ (B_{SM}(\text{B}_{\text{s}} \rightarrow \gamma \gamma) &\sim 1 \times 10^{-6}) \end{split}$$

after continuum background rejection and π^0 , η vetoes 2d fit to m_{FS} and ΔE , $N_S = 21.3^{+12.8}_{-11.8} \pm 1.4$

 $B(B^0 \rightarrow \gamma \gamma) < 6.1 \times 10^{-7} \oplus 90\%$ C.L. (using 104 fb⁻¹) [PRD73, 051107 (2006)]

uncertainties from f_B and $|V_{ub}|$ can be reduced to B_B and other CKM uncertainties by combining with precise Δm_d $\rightarrow \mathbf{D}^{(*)} \tau \nu$

2HDM (type II): $B(B \rightarrow D\tau^+ \nu) = G_F^2 \tau_B |V_{cb}|^2 f(F_V, F_S, \frac{m_B^2}{m_{H^+}^2} \tan^2 \beta)$

uncertainties from form factors F_V and F_S can be studied with $B \rightarrow D l \nu$ (more form factors in $B \rightarrow D^* \tau \nu$)

Event reconstruction in \mathbf{B} \rightarrow \tau \nu

$\mathbf{B}^+ \rightarrow \tau^+ \nu$ results

see De Nardo Gugliemo and Jacek Stypula's talks

⇒

$\underline{\mathbf{B}^+ \to \tau^+ \nu \text{ results}}$

World average: $B(B^+ \rightarrow \tau^+ \nu) = (1.68 \pm 0.31) \times 10^{-4}$

$\mathbf{B}^+ \rightarrow \mathbf{D}^{(*)} \tau^+ \nu$ summary

Combined charged Higgs bound from B-factories

(see Nazila Mahmoudi's talk)

see also: U.Haisch et al (arXiv:0805.2141), O.Deschamps et al (arXiv:0907.5135)...

$\underline{\mathbf{B}^{+}} \rightarrow \underline{\mathbf{D}^{-}} \underline{\mathbf{l}^{+}} \underline{\mathbf{l}^{+}}$

Majorana neutrinos allow lepton number violating process as $B^+{\rightarrow}\,h^{-}l^+l^+~(h=D\,,\,\pi\,...)$

First search of such decay: no event found ⇒ will extend to other LV charmful B decays

$\mathbf{B} \rightarrow \eta' \mathbf{h}$

Unexpected large BF at large X_s mass

- $\circ \ 657\,MB\overline{B}$
- Sum of exclusive: K $n\pi$ (n \leq 4, $n_{\pi^0} \leq$ 1)
- $\circ \ p_{\eta}^{\text{CM}} > 2.0 \ GeV/c$

 $N(B \rightarrow X_s \eta) = 1054 \pm 54 \pm 18$ (M_{X_s}<2.6 GeV/c²)

Signal yields are extracted by fitting the M_{bc} in bins of $M(X_s)$

 $\mathbf{B} \rightarrow \mathbf{X}_{s} \eta$

 $B(B \to X_s \eta) = (26.1 \pm 3.0^{+1.9}_{-2.1} + 4.0 \text{(model})) \times 10^{-5}$

Large signals for $M(X_s)>2$ GeV for both η/η' channels **rule out** η ' **specific mechanisms** (e.g. ''large η 'g g coupling'')

 $A_{CP}(B \rightarrow X_{s} \eta; M_{X_{s}} < 2.6 \text{GeV}/c^{2}) = -0.13 \pm 0.04 + 0.02 + 0.02 + 0.03$ $\Sigma = 2.6 \sigma \text{ (incl. syst)}$

Events / (0.01

 \Rightarrow complementarity between B-factories and LHCb

Belle can do neutrals, cleaner, but will have less statistics...

What is coming next?

Finalizing BaBar and Belle results with full data samples...

BaBar: "Two years after the end of the data taking, BaBar continues to exploit its rich dataset, more results will be coming..." (Alessandro Gaz) Belle:

 $\circ~$ reprocessed data sample with improved tracking efficiency

- none of the results shown for rare B decays use full data sample yet
- $\circ\,$ hadronic tag efficiency improved: effective luminosity improved by factor $\sim\!\times2$

and then... Super B factories !

 \Rightarrow physics with O(10¹⁰) B, τ , D....

 $2 \ Super \ B \ Factories \ projects \colon SuperB \ (in \ Italy) \ and \ SuperKEKB/Belle \ II \ (in \ Japan) \\$

⇒ KEKB upgrade has been approved (see Y.Ushiroda's talk) 100 oku yen^(*) for machine (FY 2010-2012)

Summary

 $b \rightarrow s\gamma$, $b \rightarrow d\gamma$, $b \rightarrow sl^+l^-$, $B^+ \rightarrow \tau \nu$, $B \rightarrow D \tau \nu$... measured \Rightarrow provide tests of SM predictions and interesting BSM constraints

- $\circ~$ Charged Higgs bounds from $b \!\rightarrow\! s \, \gamma$, $B^+ \!\rightarrow\! \tau \, \nu$, $B^+ \!\rightarrow\! D \, \tau \, \nu$
- $\,\circ\,$ Constraints on Wilson coefficients C_7 , C_9 and C_{10}
- $\circ~$ Constraints on $|\,V_{td}\,|/|\,V_{ts}\,|$
- ⇒ Interesting signatures
 - $\circ \ B(B^+ \! \rightarrow \! \tau^+ \nu)$ direct measurement versus CKM fit
 - $\circ~$ large forward-backward asymmetry of $K^{*}l^{+}l^{-}$

Final Belle/BaBar data samples are yet to be analyzed !

Even more interesting results at Super B factories with two orders of magnitude larger data samples !