Rare B decays

at B factories

Karim Trabelsi KEK, IPNS July 27, 2010

35 ${ }^{\text {th }}$ International Conference on High Energy Physics
July 22-28, 2010, Paris

Outline

Rare and beautiful...

Radiative/EW decays

1. $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}}$ y
2. $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}, \mathrm{d}} \gamma$
3. $\mathrm{B} \rightarrow \mathrm{K}^{(*)} \mathrm{l}^{+} \mathrm{l}^{-}$
4. $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \mathrm{l}^{+} \mathrm{l}^{-}$
5. $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \tau^{+} \tau^{-}$
6. $\mathrm{B} \rightarrow \gamma \gamma$

Tauonic decays
7. $\mathrm{B} \rightarrow \tau v$
8. $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \tau \mathcal{V}$

Exotic decays
9. $\mathrm{B}^{+} \rightarrow \mathrm{D}^{-} \mathrm{l}^{+} \mathrm{l}^{+}$

Charmless had decays
10. $\mathrm{B} \rightarrow \eta^{\prime} \mathrm{h}$
11. $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \eta$
at $Y(5 \mathrm{~S})$
12. rare B_{s}
$\left(\mathrm{fb}^{-1}\right) \quad$ Rare B: large samples needed

$\sim 770 \mathrm{MB} \overline{\mathrm{B}}$ for Belle, $\sim 470 \mathrm{MB} \overline{\mathrm{B}}$ for BaBar
$\sim 14 \mathrm{M}_{\mathrm{s}}$ also! ($(5 \mathrm{~S})$ runs)

Radiative and Electroweak Penguin Decays

Radiative and Electroweak Penguin Decays are Flavor Changing Neutral Currents (FCNC) occuring in the Standard Model only at the loop level
\Rightarrow high sensitivity to New Physics (NP)
(can appear in the loop with size comparable to leading SM contributions)
\Rightarrow Complementary to the direct production of new particles expected at LHC

Huge datasets collected at the two B-factories, BaBar and Belle, have made it possible to explore precisely these decays in exclusive channels and inclusive measurements

$\underline{\mathbf{B} \rightarrow \mathbf{X}_{\mathrm{s}} \gamma}$

W^{-}

Sensitive to NP

NNLO SM calculation:
$B_{S M}\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)=(3.15 \pm 0.23) \times 10^{-4}$ (for $\mathrm{E}_{\gamma}>1.6 \mathrm{GeV}$)
M.Misiak et al. PRL 98, 022002 (2007)
(see also talk of Soumitra Nandi)

The lower γ energy threshold the smaller the model uncertainties in SM,

Charged Higgs (2HDM Type II) bound
 but the larger background in measurement

$\underline{\mathbf{B} \rightarrow \mathbf{X}_{\mathrm{s}} \boldsymbol{\gamma}}$

inclusive $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma$ measurement untagged
lepton tag: background suppression, low stat

- No kinematic constraints
- Only a high energy photon measured in $Y(4 \mathrm{~S})$ rest frame
- Lower E_{γ} threshold (1.7 GeV)

Continuum bkg. treatment

$\mathbf{B} \rightarrow \mathbf{X}_{\mathrm{s}} \gamma$ spectrum

PRL 103, 241801 (2009)

Background subtracted

Efficiency corrected and averaged

$$
\boldsymbol{B}\left(\mathbf{B} \rightarrow \mathbf{X}_{\mathrm{s}} \boldsymbol{\gamma}\right)=(\mathbf{3 . 4 5} \pm \mathbf{0 . 1 5} \pm \mathbf{0 . 4 0}) \times \mathbf{1 0}^{-4}\left(\text { for } \mathrm{E}_{\gamma}>1.7 \mathrm{GeV}\right)
$$

- Most precise measurement of $B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)$ (lowest E_{γ} threshold)
- Crucial input for global fit to extract $\left|\mathrm{V}_{\mathrm{ub}}\right|$ and $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma$ decay rate (see Florian Bernlochner's talk)
- B is given for E_{γ} thresholds: 1.7, $1.8,1.9,2.0 \mathrm{GeV}$
- Systematic error is dominated by off -resonance subtraction!

$\underline{\mathbf{B} \rightarrow \mathbf{X}_{s} \gamma}$

HFAG 2010: $B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)=(3.55 \pm 0.26) \times 10^{-4}\left(\right.$ for $\left.\mathrm{E}_{\gamma}>1.6 \mathrm{GeV}\right)$ vs

$$
\mathrm{SM}: B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)=(3.15 \pm 0.23) \times 10^{-4}\left(\text { for } \mathrm{E}_{\gamma}>1.6 \mathrm{GeV}\right)
$$

CLEO [9.1 fb ${ }^{-1}$]

 (2001) untag BaBar [82 fb ${ }^{-1}$] (2005) sum-of-excl BaBar $\left[82 \mathrm{fb}^{-1}\right]$ (2007) lep-tag BaBar [210 fb ${ }^{-1}$] (2008) breco-tag Belle [5.8 fb ${ }^{-1}$] (2001) sum-of-excl Belle [605 fb ${ }^{-1}$] (2009) untag+lep-tag HFAG 2010

$$
\mathrm{BF}\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)\left(10^{-4}\right)\left(\mathrm{E}_{\gamma}>1.6 \mathrm{GeV}\right)
$$

Charged Higss bound (2HDM TypeII) $\mathrm{M}_{\mathrm{H}^{+}}>300 \mathrm{GeV}$

$\underline{\mathbf{B} \rightarrow \mathbf{X}_{\mathrm{s}, \mathrm{d}} \boldsymbol{\gamma}}$

see Deborah Bard's talk arXiv: 1005.4087

- $471 \mathrm{MB} \overline{\mathrm{B}}$
- Sum of seven exclusive final states:
$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \gamma, \mathrm{K}^{+} \pi^{-} \pi^{0} \gamma, \mathrm{~K}^{+} \pi^{-} \pi^{+} \pi^{-} \gamma, \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0} \gamma, \mathrm{~K}^{+} \pi^{-} \pi^{+} \gamma, \mathrm{K}^{+} \pi^{-} \pi^{+} \pi^{0} \gamma, \mathrm{~K}^{+} \eta \gamma$

$B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)=$ $\left(23.0 \pm 0.8_{\text {stat }} \pm 3.0_{\text {syst }}\right) \times 10^{-5}$ $\left(\mathrm{M}\left(\mathrm{X}_{\mathrm{s}}\right)<2.0 \mathrm{GeV}\right)$
- Sum of seven exclusive final states:
$\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-} \gamma, \pi^{+} \pi^{-} \pi^{0} \gamma, \pi^{+} \pi^{-} \pi^{+} \pi^{-} \gamma, \mathrm{B}^{+} \rightarrow \pi^{+} \pi^{0} \gamma, \pi^{+} \pi^{-} \pi^{+} \gamma, \pi^{+} \pi^{-} \pi^{+} \pi^{0} \gamma, \pi^{+} \eta \gamma$

$$
\begin{aligned}
& B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{d}} \gamma\right)= \\
& \left(9.2 \pm 2.0_{\text {stat }} \pm 2.3_{\text {syst }}\right) \times 10^{-6} \\
& \quad\left(\mathrm{M}\left(\mathrm{X}_{\mathrm{d}}\right)<2.0 \mathrm{GeV}\right) \\
& \text { mass range covers } \sim 60 \% \\
& \text { of total spectrum in } \mathrm{b} \rightarrow \mathrm{~s}, \mathrm{~d} \gamma
\end{aligned}
$$

$\left|\mathbf{V}_{\mathrm{td}}\right| /\left|\mathbf{V}_{\mathrm{ts}}\right|$ using... \ldots...inclusive $X_{s, d} \gamma$

B-mixing average :

$$
\frac{\left|\mathrm{V}_{\mathrm{td}}\right|}{\left|\mathrm{V}_{\mathrm{ts}}\right|}=0.2059 \pm 0.001_{\exp } \pm 0.008_{\mathrm{th}}
$$ arXiv: 1005.4087

$$
\Rightarrow \frac{\left|V_{\text {td }}\right|}{\left|V_{\text {ts }}\right|}=0.199 \pm 0.022_{\text {stat }} \pm 0.012_{\text {syst }} \pm 0.027_{\text {extrapol }} \pm 0.002_{\text {th }}
$$

...exclusive modes: $\mathrm{B} \rightarrow(\rho / \omega) \gamma, \mathrm{K}^{*} \gamma$ theory error $\sim 1 \%$

$\Rightarrow \frac{\left|\mathbf{V}_{\mathrm{td}}\right|}{\left|\mathbf{V}_{\mathrm{ts}}\right|}=\mathbf{0 . 2 0 7} 7_{-0.032}^{+0.030}$
theory error $\sim 8 \%$

$\mathbf{b} \rightarrow \mathbf{s l}^{+} \mathbf{I}^{-}$

$\Rightarrow 2$ orders of magnitude smaller than $\mathrm{b} \rightarrow \mathrm{s} \gamma$ but rich NP search potential

\author{

- electromagnetic penguin: C_{7}
 Amplitudes from
 。 vector electroweak: $\quad \mathrm{C}_{9}$
 - axial-vector electroweak: C_{10}
}
may interfere
w/ contributions from NP

Many observables:

- Branching fractions
- Isospin asymmetry (A_{I})
- Lepton forward-backward asymmetry (A_{FB})
(many other observables: Tobias Hurth's talk)
\Rightarrow Exclusive $\left(\mathrm{B} \rightarrow \mathrm{K}^{(*)} \mathrm{l}^{+} \mathrm{l}^{-}\right)$, Inclusive $\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \mathrm{l}^{+} \mathrm{l}^{-}\right)$

Exclusive $B \rightarrow \mathbf{K I}^{+} \mathbf{1}^{-}$and $\mathbf{B} \rightarrow \mathbf{K}^{*} \mathbf{1}^{+} \mathbf{1}^{-}$

$$
\mathrm{K}=\mathrm{K}^{+} \text {or } \mathrm{K}_{\mathrm{S}}^{0}, \mathrm{~K}^{*}=\mathrm{K}^{* 0} \rightarrow \mathrm{~K}^{+} \pi^{-}, \mathrm{K}^{*+} \rightarrow \mathrm{K}_{\mathrm{s}}^{0} \pi^{+}, \mathrm{K}^{+} \pi^{0}, \mathrm{l}=\mathrm{e} \text { or } \mu
$$

Various observables: Forward-backward asymmetry, F_{L}, isospin, lepton flavor...

$\sim 250 \mathrm{~K}^{*} \mathrm{l}^{+} \mathrm{l}^{-}$events
$\sim 160 \mathrm{Kl}^{+} \mathrm{l}^{-}$events

$$
A_{\mathrm{FB}}\left(\mathrm{q}^{2}\right)=-\mathrm{C}_{10}^{\mathrm{eff}} \xi\left(\mathrm{q}^{2}\right)\left[\operatorname{Re}\left(\mathrm{C}_{9}^{\mathrm{eff}}\right) \mathrm{F}_{1}+\frac{1}{\mathrm{q}^{2}} \mathrm{C}_{7}^{\mathrm{eff}} \mathrm{~F}_{2}\right]
$$

$\mathrm{C}_{7}=-\mathrm{C}_{7}^{\mathrm{SM}}$
SM

No crossing ? opposite sign C_{7} ?

PRL 103, 171801 (2009)

$$
\mathrm{q}^{2}=\mathrm{m}_{\mathrm{l}^{+}+1}^{2}
$$

Hints of anomalously large positive A_{FB} at low and high q^{2}
similar situation in BaBar's case PRD 79, 031102 (2009) being updated

$\mathbf{b} \rightarrow \mathbf{s} \gamma, \mathbf{s l}^{+} \mathbf{l}^{-}$and Wilson coefficients

NP effects can be parameterized as deviations from SM in Wilson coefficients $\mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{10}: \mathrm{C}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}^{\mathrm{SM}}+\mathrm{C}_{\mathrm{i}}^{\mathrm{NP}}$

$$
\left.\underline{b \rightarrow s \gamma} \text { (sensitive to }\left|C_{7}\right| \text { only }\right)
$$

$$
\begin{aligned}
B(\mathrm{~b} \rightarrow \mathrm{~s} \gamma)= & \frac{\mathrm{G}_{\mathrm{F}}^{2} \alpha_{\mathrm{em}} \mathrm{~m}_{\mathrm{b}}^{5}\left|\mathrm{~V}_{\mathrm{ts}}^{*} \mathrm{~V}_{\mathrm{tb}}\right|^{2}}{32 \pi^{4}}\left|\mathrm{C}_{7}^{\text {eff }}\right|^{2}+\text { corr. } \\
& \underline{\mathrm{b} \rightarrow \mathrm{sl}^{+} \mathrm{l}^{-}\left(\text {sensitive to } \mathrm{C}_{7} \text { sign, } \mathrm{C}_{9}, \mathrm{C}_{10}\right)} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{d} \Gamma\left(\mathrm{~b} \rightarrow \mathrm{sl}^{+} \mathrm{l}^{-}\right)}{\mathrm{dq}^{2}}=\left(\frac{\alpha_{\mathrm{em}}}{4 \pi}\right)^{2} \frac{\mathrm{G}_{\mathrm{F}}^{2} \mathrm{~m}_{\mathrm{b}}^{5}\left|\mathrm{~V}_{\mathrm{ts}}^{*} \mathrm{~V}_{\mathrm{tb}}\right|^{2}}{48 \pi^{3}}\left(1-\mathrm{q}^{2}\right)^{2} \\
& \quad \times\left[\left(1+2 \mathrm{q}^{2}\right)\left(\left|\mathrm{C}_{9}^{\text {eff }}\right|^{2}+\left|\mathrm{C}_{10}^{\text {eff }}\right|^{2}\right)+4\left(1+\frac{2}{\mathrm{q}^{2}}\right)\left|\mathbf{C}_{7}^{\text {eff }}\right|^{2}+12 \operatorname{Re}\left(\mathbf{C}_{7}^{\text {eff }} \mathrm{C}_{9}^{\text {eff }}\right)\right]+\mathrm{corr}
\end{aligned}
$$

Inclusive differential branching fraction is sensitive to Wilson coefficients (no form factor uncertainties of $B \rightarrow \mathrm{~K}^{*} \mathrm{l}^{+} \mathrm{l}^{-}$)

Opposite-sign C_{7} makes the branching fraction larger (in SM, $\mathrm{C}_{7}<0$ and $\left.\mathrm{C}_{9}>0\right)$

$\mathbf{B} \rightarrow \mathbf{X}_{\mathbf{s}} \mathbf{I}^{+} \mathbf{1}^{-}$

Full inclusive measurement is not feasible so far, sum-of-exclusive technique has been used by Belle/BaBar
X_{s} reconstructed by: $1\left(\mathrm{~K}^{ \pm}\right.$or $\left.\mathrm{K}_{\mathrm{s}}\right)+4 \pi^{\prime} \mathrm{s}\left(\mathrm{N} \pi^{0} \leq 1\right)$ (36 modes)
\Rightarrow Belle ($657 \mathrm{MB} \overline{\mathrm{B}}$), preliminary (previous $152 \mathrm{MB} \overline{\mathrm{B}}$)

10σ signal for entire $\mathrm{M}\left(\mathrm{X}_{\mathrm{s}}\right)$

3σ signal for $\mathrm{M}\left(\mathrm{X}_{\mathrm{s}}\right)>1.0 \mathrm{GeV}$

Combinatorial BG (semi-leptonic B decays, continuum)

- Self Cross-Feed
\square Peaking BG B $\rightarrow \mathrm{X}_{\mathrm{s}} \pi^{+} \pi^{-}$(double mis-id), leakage from J / ψ and ψ^{\prime} veto, charmonium higher resonances...

$\mathbf{B} \rightarrow \mathbf{X}_{\mathbf{s}} \mathbf{l}^{+} \mathbf{1}^{-}$

$B\left(B \rightarrow \mathbf{X}_{\mathrm{s}} \mathbf{1}^{+} \mathbf{1}^{-}\right)=\left(\mathbf{3 . 3 3} \pm \mathbf{0 . 8 0}_{-\mathbf{0 . 2 4}}^{+0.19}\right) \times \mathbf{1 0}^{-6}$
$\left[\mathrm{q}^{2}>0.2 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right.$, extrapolated for $\mathrm{J} / \psi, \psi^{\prime}$, and $\left.\mathrm{M}\left(\mathrm{X}_{\mathrm{s}}\right)>2.0 \mathrm{GeV}\right]$
HFAG average: $B=\left(3.66_{-0.77}^{+0.76}\right) \times 10^{-6}$
SM (Ali et al) : $B_{S M}=(4.2 \pm 0.7) \times 10^{-6}$
SM (Gambino et al): $B_{S M}=(4.4 \pm 0.7) \times 10^{-6}$
PRL 94, 061803 (2005)

\mathbf{q}^{2} spectrum in $\mathbf{B} \rightarrow \mathbf{X}_{\mathbf{s}} \mathbf{l}^{+} \mathbf{I}^{-}$

\Rightarrow No branching fraction enhancement in this region strongly disfavor the case with the flipped sign of \mathbf{C}_{7}
(other less extreme NP possibilities are still allowed)

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+}{\tau^{+}}^{-}$

$0.6 \leq \hat{S} \leq 1$:

$$
\begin{aligned}
& B_{S M}\left(\mathrm{~B}^{+} \rightarrow \mathrm{Xe}^{+} \mathrm{e}^{-}\right)=8.5 \times 10^{-7} \\
& B_{S M}\left(\mathrm{~B}^{+} \rightarrow \mathrm{X} \mu^{+} \mu^{-}\right)=8.5 \times 10^{-7} \\
& B_{S M}\left(\mathrm{~B}^{+} \rightarrow \mathrm{X}^{+} \tau^{-} \tau^{-}\right)=4.3 \times 10^{-7}
\end{aligned}
$$

- rate can be enhanced by NP
(NMSSM rate could be $\propto\left(\mathrm{M}_{\mathrm{T}}^{2} / \mathrm{M}_{\mu}^{2}\right) \sim 280$)
$\circ \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \tau^{+} \tau^{-}$is $\sim 50 \%$ of total inclusive rate

Expected Bckg: 65 ± 7
Data events: 47

20
$q^{2}\left[\mathrm{GeV}^{2} / \mathrm{c}^{4}\right]$

- First search (preliminary)
- 468M B \bar{B}
- Hadronic tag ($\epsilon \sim 0.2$ \%)
- $\tau \rightarrow \mathrm{e} \bar{\nu} v, \mu \bar{v} v, \pi \nu$
(2-4 neutrinos in the final state)
$B\left(B^{+} \rightarrow \mathrm{K}^{+} \tau^{+} \tau^{-}\right)<3.3 \times 10^{-3} @ \mathbf{9 0} \%$ C.L.

$\mathbf{B}_{d} \rightarrow \gamma \gamma$

$$
B_{S M} \sim 3 \times 10^{-8}
$$

Bosch and Buchalla JHEP 0208:054 (2002)

$$
\left(B_{S M}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \gamma \gamma\right) \sim 1 \times 10^{-6}\right)
$$

after continuum background rejection and π^{0}, η vetoes 2 d fit to m_{ES} and $\Delta \mathrm{E}, \mathrm{N}_{\mathrm{S}}=21.3_{-11.8}^{+12.8} \pm 1.4$

$$
B\left(\mathbf{B}^{0} \rightarrow \gamma \gamma\right)<3.2 \times 10^{-7} @ 90 \% \text { C.L. }
$$

[^0]
Tauonic B decays

$B \rightarrow \tau$

$$
B_{\mathrm{SM}}\left(\mathrm{~B}^{+} \rightarrow \tau^{+} v\right)=\frac{\mathrm{G}_{\mathrm{F}}^{2} \mathrm{~m}_{\mathrm{B}} \mathrm{~m}_{\tau}^{2}}{8 \pi}\left(1-\frac{\mathrm{m}_{\tau}^{2}}{\mathrm{~m}_{\mathrm{B}}^{2}} \mathrm{f}_{\mathrm{B}}^{2}\left|\mathrm{~V}_{\mathrm{ub}}\right|^{2} \tau_{\mathrm{B}}\right.
$$

2 HDM (type II) : $B\left(\mathrm{~B}^{+} \rightarrow \boldsymbol{\tau}^{+} v\right)=B_{\mathrm{SM}} \times\left(1-\frac{\mathrm{m}_{\mathrm{B}}^{2}}{\mathrm{~m}_{\mathrm{H}^{+}}^{2}} \tan ^{2} \beta\right)^{2}$
uncertainties from f_{B} and $\left|V_{u b}\right|$ can be reduced to B_{B} and other CKM uncertainties by combining with precise $\Delta \mathrm{m}_{\mathrm{d}}$

$\underline{\mathbf{B} \rightarrow \mathbf{D}^{(*)} \boldsymbol{\tau} \mathcal{V}}$

2 HDM (type II): $B\left(\mathrm{~B} \rightarrow \mathrm{D} \tau^{+} v\right)=\mathrm{G}_{\mathrm{F}}^{2} \tau_{\mathrm{B}}\left|\mathrm{V}_{\mathrm{cb}}\right|^{2} \mathrm{f}\left(\mathrm{F}_{\mathrm{V}}, \mathrm{F}_{\mathrm{S}}, \frac{\mathrm{m}_{\mathrm{B}}^{2}}{\mathrm{~m}_{\mathrm{H}^{+}}^{2}} \tan ^{2} \beta\right)$
uncertainties from form factors F_{v} and F_{S} can be studied with $\mathrm{B} \rightarrow \mathrm{Dl} v$ (more form factors in $\mathrm{B} \rightarrow \mathrm{D}^{*} \tau v$)

Event reconstruction in $B \rightarrow \tau \mathcal{v}$

$$
\underline{B}_{\mathrm{sig}} \rightarrow \tau \mathcal{V}
$$

$$
\text { (70 \% of all } \tau \text { decays) }
$$

Require no particle and no energy left after removing $\mathrm{B}_{\text {tag }}$

Btag
$\boldsymbol{B}_{\text {tag }}$
hadronic tag $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \pi, \mathrm{D}^{(*)}$ rho.... $\epsilon \sim 0.2 \%$
semileptonic tag

$$
\mathrm{B} \rightarrow \mathrm{D}^{(*)} l v \mathrm{X}
$$

$\mathrm{B}^{+} \rightarrow \tau^{+} \nu$ results

Extra calorimeter energy: $\mathrm{E}_{\text {ELL/extra }}(\mathrm{GeV})$
Belle $\quad \mathrm{N}_{\mathrm{BB}} \quad \boldsymbol{B}\left(10^{-4}\right) \quad \Sigma(\sigma)$

BaBar

\Rightarrow| Hadronic tag | $(468 \mathrm{M})$ | $\left(1.80_{-0.54}^{+0.57} \pm 0.26\right)$ | 3.6 | preliminary |
| :---: | :---: | :---: | :---: | :---: |
| Semilep. tag | $(459 \mathrm{M})$ | $(1.7 \pm 0.8 \pm 0.2)$ | 2.3 | PRD81, 051101 (2010) |

$\mathbf{B}^{+} \rightarrow \tau^{+} \nu$ results

World average : $\boldsymbol{B}\left(\mathbf{B}^{+} \rightarrow \boldsymbol{\tau}^{+} \boldsymbol{v}\right)=(\mathbf{1 . 6 8} \pm \mathbf{0 . 3 1}) \times \mathbf{1 0}^{-4}$

$\underline{B}^{+} \rightarrow \mathbf{D}^{(*)} \boldsymbol{\tau}^{+} \boldsymbol{v}$

see Jacek Stypula's talk

$\mathbf{B}_{\text {tag }}$: all remaining particles\square signal combined
$\square \bar{D}^{+0} \tau^{+} \mathrm{V}$
$\overline{\mathrm{D}}^{0} \tau^{+}$,
\square background
\square signal combined
$\square \bar{D}^{+} \tau^{+} \tau^{+}$
$\square \bar{D}^{0} \tau^{+} v$
\square background
\square signal combined
$\square \bar{D}^{+} \tau^{+} \tau^{+}$
$\square \bar{D}^{0} \tau^{+} v$
\square background
\square signal combined
$\square \bar{D}^{+0} \tau^{+} \mathrm{v}$
$\square \overline{\mathrm{D}}^{0} \tau^{+} \mathrm{v}$
\square background
First $\mathbf{B}^{+} \rightarrow \overline{\mathbf{D}}^{\mathbf{0}} \tau \nu$ evidence !

$$
\begin{array}{lcccc}
\mathbf{M}_{\mathbf{t a g}}\left(\mathbf{G e V} / \mathbf{c}^{\mathbf{2}}\right) & \mathbf{P}_{\mathbf{D}^{\mathbf{o}}}(\mathbf{G e V} / \mathbf{c}) & \mathbf{N}_{\mathrm{S}} & B(\%) & \Sigma(\sigma) \\
& \mathbf{B}^{+} \rightarrow \overline{\mathbf{D}}^{* \mathbf{0}} \boldsymbol{\tau}^{+} \boldsymbol{v} & 446_{-56}^{+58}(226) & 2.12_{-0.27}^{+0.28} \pm 0.29 & 8.1 \\
& \mathbf{B}^{+} \rightarrow \overline{\mathbf{D}}^{\mathbf{0}} \boldsymbol{\tau}^{+} \boldsymbol{v} & 146_{-41}^{+42}(15) & 0.77 \pm 0.22 \pm 0.12 & 3.5
\end{array}
$$

arXiv: 1005.2302 submitted to PRL

- 657M B \bar{B}
- same method than for $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*} \tau^{+} v$ $\mathbf{B}_{\text {sig }}$:
$\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi, \mathrm{~K} \pi \pi^{0}$
$\tau^{+} \rightarrow \mathrm{e}^{+} \nu_{\mathrm{e}} \bar{\nu}_{T}, \mu^{+} v_{\mu} \bar{v}_{T}, \pi^{+} \bar{v}_{\tau}, \rho^{+} \bar{v}_{T}$
13 different decay chains

$\mathbf{B}^{+} \rightarrow \mathbf{D}^{(*)} \tau^{+} \boldsymbol{\nu}$ summary

$$
\mathbf{B}^{+} \rightarrow \overline{\mathbf{D}}^{\mathbf{0}} \boldsymbol{\tau}^{+} \boldsymbol{v}
$$

$$
\mathbf{B}^{\mathbf{0}} \rightarrow \overline{\mathbf{D}}^{-} \boldsymbol{\tau}^{+} \nu
$$

-Belle inclusive tag hadronic tag

ـ. BaBar hadronic tag SM $\begin{gathered}\text { C.-H. Chen and C.-Q. Geng } \\ \text { JHEP 0610, } 053(\mathbf{2 0 0 6})\end{gathered}$

Belle inclusive tag PRL99, 191807 (2007) arXiv:1005.2302
Belle hadronic tag arXiv:0910.4301
BaBar hadronic tag PRL100, 021801 (2008)

Combined charged Higgs bound from B-factories

2HDM (Type I-IV)
(see Nazila Mahmoudi's talk)

$B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)(\mathrm{red}), B(\mathrm{~B} \rightarrow \tau \nu)($ blue $)$ $B(\mathrm{~B} \rightarrow \mathrm{D} \tau v)$ (yellow)
F.Mahmoudi and O.Stal PRD81, 035016 (2010)

NUHM scenario (non-universal Higgs mass models)

$$
B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right) \text { (blue), } B(\mathrm{~B} \rightarrow \tau \mathcal{v}) \text { (yellow) }
$$

$B\left(\mathrm{~B} \rightarrow \mathrm{D}_{\tau} v\right)$ (dark green), allowed region (green)

> D.Eriksson et al
> JHEP, 0811 (2008)
see also: U.Haisch et al (arXiv:0805.2141), O.Deschamps et al (arXiv:0907.5135)...

$\mathbf{B}^{+} \rightarrow \mathbf{D}^{-1} \mathbf{l}^{+} \mathbf{1}^{+}$

Majorana neutrinos allow lepton number violating process as $\mathrm{B}^{+} \rightarrow \mathrm{h}^{-} \mathrm{l}^{+} \mathrm{l}^{+}(\mathrm{h}=\mathrm{D}, \pi \ldots)$

First search of such decay: no event found \Rightarrow will extend to other LV charmful B decays

$\mathbf{B} \rightarrow \eta^{\prime} \mathbf{h}$

- $B\left(\mathrm{~B} \rightarrow \eta^{\prime} \mathrm{K}\right)>B\left(\mathrm{~B} \rightarrow \eta^{\prime} \mathrm{K}^{*}\right)$ (whereas $B\left(\mathrm{~B} \rightarrow \eta \mathrm{~K}^{*}\right)>B(\mathrm{~B} \rightarrow \eta \mathrm{~K})$)
- poor agreement between Belle and BaBar for $\mathrm{B}^{+} \rightarrow \eta^{\prime} \rho^{+}$
(see Alessandro Gaz's talk) arXiv: 1004.0240

- confirm $B\left(\mathrm{~B} \rightarrow \eta^{\prime} \mathrm{K}\right)>B\left(\mathrm{~B} \rightarrow \eta^{\prime} \mathrm{K}^{*}\right)$
- confirm $\mathrm{B}^{+} \rightarrow \eta^{\prime} \rho^{+}$signal
- observe $\mathrm{B}^{+} \rightarrow \eta^{\prime} \mathrm{K}_{0}^{*}(1430)^{0}, \eta^{\prime} \mathrm{K}_{2}^{*}(1430)^{0} \ldots$
$B\left(B \rightarrow \eta^{\prime} K_{2}^{*}(1430)\right)>B\left(B \rightarrow \eta^{\prime} K_{2}^{*}(1430)\right)$ as in ωK^{*}

Unexpected large BF at large X_{s} mass

- $657 \mathrm{MB} \overline{\mathrm{B}}$
- Sum of exclusive: $\mathrm{Kn} \pi\left(\mathrm{n} \leq 4, \mathrm{n}_{\pi^{0}} \leq 1\right)$
- $\mathrm{p}_{n}^{\mathrm{cM}}>2.0 \mathrm{GeV} / \mathrm{c}$

Signal yields are extracted by fitting the M_{bc} in bins of $\mathrm{M}\left(\mathrm{X}_{\mathrm{s}}\right)$

$\underline{\mathbf{B} \rightarrow \mathbf{X}_{\mathrm{s}} \eta}$

Partial BF in $0.4<\mathrm{M}_{(}\left(\mathrm{X}_{\mathrm{s}}\right)<2.6 \mathrm{GeV} / \mathrm{c}^{2}$

$$
B\left(B \rightarrow \mathbf{X}_{s} \eta\right)=\left(26.1 \pm 3.0_{-2.1}^{+1.9}+4.0(\operatorname{model})\right) \times 10^{-5}
$$

$\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \eta^{\prime}$ from BaBar PRL93, 061801 (2004)

Large signals for $\mathrm{M}\left(\mathrm{X}_{\mathrm{s}}\right)>2 \mathrm{GeV}$ for both η / η^{\prime} channels rule out η ' specific mechanisms (e.g. ''large η 'g g coupling' ' $)$

$\mathrm{A}_{\mathrm{CP}}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \eta ; \mathrm{M}_{\mathrm{X}_{\mathrm{s}}}<2.6 \mathrm{GeV} / \mathrm{C}^{2}\right)=-0.13 \pm 0.044_{-0.03}^{+0.02}$

$$
\Sigma=2.6 \sigma(\text { incl. syst })
$$

Rare B_{s} decays

using $1 / 5$ of the $\Upsilon(5 \mathrm{~S})$ data sample available

\Rightarrow complementarity between B-factories and LHCb

Belle can do neutrals, cleaner, but will have less statistics...

What is coming next?

Finalizing BaBar and Belle results with full data samples...
BaBar: ' 'Two years after the end of the data taking, BaBar continues to exploit its rich dataset, more results will be coming...' (Alessandro Gaz)
Belle:

- reprocessed data sample with improved tracking efficiency
- none of the results shown for rare B decays use full data sample yet
- hadronic tag efficiency improved: effective luminosity improved by factor $\sim \times 2$

\Rightarrow new results coming soon!

and then... Super B factories!

\Rightarrow physics with $\mathrm{O}\left(10^{10}\right) \mathrm{B}, \tau, \mathrm{D} \ldots$
2 Super B Factories projects: SuperB (in Italy) and SuperKEKB/Belle II (in Japan)
\Rightarrow KEKB upgrade has been approved (see Y.Ushiroda's talk) 100 oku yen ${ }^{(*)}$ for machine (FY 2010-2012)

(*) 100 oku yen $\sim 88.6 \mathrm{M}$ euros (Jul 26, 2010)

Summary

$\mathrm{b} \rightarrow \mathrm{s} y, \mathrm{~b} \rightarrow \mathrm{~d} y, \mathrm{~b} \rightarrow \mathrm{sl}^{+} \mathrm{l}^{-}, \mathrm{B}^{+} \rightarrow \tau v, \mathrm{~B} \rightarrow \mathrm{D} \tau v \ldots$ measured
\Rightarrow provide tests of SM predictions and interesting BSM constraints

- Charged Higgs bounds from $\mathrm{b} \rightarrow \mathrm{s} \gamma, \mathrm{B}^{+} \rightarrow \tau v, \mathrm{~B}^{+} \rightarrow \mathrm{D} \tau v$
- Constraints on Wilson coefficients $\mathrm{C}_{7}, \mathrm{C}_{9}$ and C_{10}
- Constraints on $\left|\mathrm{V}_{\mathrm{td}}\right| /\left|\mathrm{V}_{\mathrm{ts}}\right|$
\Rightarrow Interesting signatures
- $B\left(\mathrm{~B}^{+} \rightarrow \tau^{+} v\right)$ direct measurement versus CKM fit
- large forward-backward asymmetry of $\mathrm{K}^{*} \mathrm{l}^{+} \mathrm{l}^{-}$

Final Belle/BaBar data samples are yet to be analyzed !

Even more interesting results at Super B factories with two orders of magnitude larger data samples!

[^0]: B
 $B\left(\mathrm{~B}^{0} \rightarrow \gamma \gamma\right)<6.1 \times 10^{-7} @ 90 \%$ C.L. (using $\left.104 \mathrm{fb}^{-1}\right)$ [PRD73, 051107 (2006)]

