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The Big Picture

 We know that strong interactions are well
described by the QCD Lagrangian:

Locp = —3F2 Ft =3, n (& — gV Afta — mn) (L
=Perturbative limit well studied

* Nuclear collisions provide a laboratory for
studying QCD outside the large Q2 regime:

— Deconfined matter (quark gluon plasma)
=“Emergent” physics not manifest in Laco
= Strong coupling = AdS/QCD (?)

— High gluon field strength, saturation
= Unitarity in fundamental field theory

* Only non-Abelian FT whose phase transition &
multi-particle behavior we can study in lab.
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*Strongly interacting matter has complex
phase diagram.

—1st order transition @ high temperature and
finite pg ending in critical point (?)
— Continuous crossover for ug~ 0



Phase Diagram of QCD “Matter”
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QCD Thermodynamics on Lattice

Energy Density or pressure QCD trace anomaly
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e Lattice thermodynamics from hotQCD group

— Sudden change in NDoF at Tc ~ 190 MeV.

=Continuous cross-over transition from hadrons to
deconfined “quark gluon plasma”

*(e-3p)/T4, an “interaction measure”
=Strong coupling already evident near Tc (?)



Relativistic Heavy lon Collider
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» Ten years of operation colliding protons,
deuterons, Au, Cu at a variety of energies



Ultra-relativistic A+A, Canonically

Recombination,
Hadronic cascade

“Hydro” evolution

Fast thermalization

Hard processes,
CGC — Glasma

‘ ’ Saturated nuclei

e In this talk focus on three problems for which
first Pb+Pb run(s) at LHC will provide insight

— Initial conditions
— Collective evolution

—Jet quenching
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 Dynamics of ultra-relativistic collision
controlled by (classical) impact parameter (b)
— How many nucleons scatter hadronically
= “# of participants”, Npart
— # of nucleon-nucleon scatterings (semi-classically)
= # of collisions, Ncoll

e Surprise: dN/dn = determined by Npart



RHIC Particle Multiplicities

— Saturation Model
== Hijing (1.35)

| EHOBOS [1] ’ “ Two-Component Fit
® pp [2]
---- EKRT [9]
Kharzeev/Nardi [8]
== HIJING [7]

Multiplicity per colliding nucleon pair

* Two different interpretations of results
— Phenomenological:
=dn/dn determined by geometry = participant nucleons
— Saturation:

=dn/dn determined by nuclear gluon fields, gluon
production from those fields.



“Saturation” @ low x

@ High energy nuclei are
highly Lorentz contracted
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“Saturation” @ low x

@ High energy nuclei are
highly Lorentz contracted

— Except for soft gluons
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“Saturation” @ low x

@ High energy nuclei are
highly Lorentz contracted

— Except for soft gluons
N chssialfiel

— Which overlap longitudinally
— And recombine

— Broadening k; distribution

=Generates a new scale: Q, |

 Naively, for Q;>> Agcps
perturbative calculations
=Large occupation #s for
k:<Q, = classical fields

e Saturation a result of
unitarity in QCD




CMS. 236 TeV
CDF, 1.8 TeV

UAS5.09 TeV B - .
ALICE. 0.9 TeV | Saturation model (LR)

CMS. 0.9 TeV - === KLN
UAS 546 GeV #* UAINSD
] A UA5SNSD
0O CDFNSD
O CMSNSD
© ALICENSD
ALICE INEL>0

dN_, /dn

10’
Vs [GeV]

e Saturation w/ non-linear (BK) evolution s HERA

+ k1 factorization

+ |local parton-hadron duality = UAS5 p+p

@546 GeV




“Hot off the Press”

and Rezaeian, aanv 1007 2430v2
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*p-p prediction at 7 TeV confirmed by CMS

*p-p = A+A evolution of Qs fixed using RHIC
Au+Au 0-6% central @ 200 GeV

—No other free parameters




“Hot off the Press”
and Rezaeian, arXiv:1007.2430v2
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*p-p prediction at 7 TeV confirmed by CMS

*p-p = A+A evolution of Qs fixed using RHIC
Au+Au 0-6% central @ 200 GeV

—No other free parameters




LHC dN/dn Predictions
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 Many different
predictions for
LHC Pb+Pb
central dN/dn

—@5.5TeV

(motivated)
predictions at
low end of
range
-1200-1600



LHC dN/dn Predictions
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New Calculation by Levin

° “Day-1 b b

measurements
@ LHC wili
provide crucial
insight on
mechanism for
initial particle
production in
A+A collisions
— Applicable to

both RHIC and
the LHC



Collective Motion: Elliptic Flow
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Collective Motion: Elliptic Flow

o 31-77 %
s 10-31 %
o 0-10 %
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* Pressure converts spatial anisotropy to
momentum anisotropy.

=Picture above not cartoon! From measurements of
strongly coupled cold atoms



q)lab-\Pplane (rad)

=2 coefficient of Fourier decomposition of dN/d¢p



Elliptic Flow Systematics: ~ 8 years old

25 30
(1/S) dN

* Plot v2/€ vs particle density / overlap area
— Higher density = more collectivity

* Result for central collisions consistent with ideal
(zero viscosity) hydrodynamics.

=Quark gluon plasma @ RHIC “perfect fluid”? NO!



ldeal Hydrodynamics in 1 slide

Shamelessly borrowed from nice talk by Matt Luzum

IDEAL (RELATIVISTIC) HYDRODYNAMIC EQUATIONS

@ Assume isotropic energy-momentum tensor in rest frame:

T[H./ — T([)U/ — ((_' e p) u/lul_/ . p g/ll./

[
= Tores! o

0
0
p
0

@ Plug in to conservation equations = ideal hydrodynamics:
d,T" =0
@ Equation of state closes the set of equations:
p = p(e)

@ An additional relation for each additional conserved current
(assumed unimportant for the following)




Relativistic hydrodynamics w/ viscosity

A fundamental problem in physics

— How to solve relativistic fluid dynamics
at finite viscosity.

Much Shear viscosity -measures the resistance to flow
prog ress - the ability of momentum transfer
in last two | N
years due
to RHIC \/
application
Bulk viscosity —-measure the resistance to expansion

Important -volume viscosity
H : Determines the dynamics of
"fnS|ghtS compressible fluid

rnom

AdS/CFT




* KSS argued that n/s has a lower bound, 1/4rx.

— Applies for large class of conformal FT / AdS duals.

In strong-coupling limit, can AdS/CFT provide
approximate description of some QGP physics?

— e.g. 5-dimensional gravity in background of black hole
dual to N = 4 Super-symmetric Yang-Mills @ T >0.

= not QCD but close enough?




Caveat: Theoretical Uncertainty in €

b=7.2fm
y=0, ns=0

Saturation

Phenomenological

=
o=
>
Q
Q
Q

 Problem:

— Energy density profile depends on assumption re:
particle production mechanism

=>i.e. (e.g.) phenomenological vs saturation
— Different profiles give different eccentricities

=lrreducible uncertainty until initial-state particle
production mechanism is under control



Romatschke: Quantitative evaluation of n/s
Phenomenological Saturation
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e Compare viscous hydro calculations to
PHOBOS v2(Npart)

— Phenomenological (Glauber) geometry prefers
= nls ~0.08 =1/4rn

— Saturation (CGC) geometry prefers
=nls ~0.16 = 2/4r




Romatschke: Quantitative evaluation of n/s

Phenomenological '\ Saturation

O STAR non-flow corrected (est.) STAR Tow corrected (o
e STAR event-plane o \ AR non-flow corrected (est).
® STAR event-plane

v, (percent)

V2

v, (percent)

e Compare viscous hydro calculations to STAR
v2(pT) non-flow corrected

— Phenomenological (Glauber) geometry prefers
= nls ~0.08 = 1/4rn

— Saturation (CGC) geometry prefers
=n/s ~0.16 = 2/4r



Romatschke: Quantitative evaluation of n/s

Phenomenological Phenomenological
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Viscous Hydro RHIC = LHC

Luzum and Romatschke,
Phys. Rev. Lett. 103:262302, 2009

RHIC Glauber s
RHIC CGC
LHC Glauber

CGC,n/s=0.16

LHC CGC Glauber, /s = 0.08

PHOBOS/CGC PHOBOS (RHIC)
PHOBOS/Glauber

20 30 40 50 60 70 80 0 50 100 150 200 250 300 350 400
(1/S gy erian) (AN /Y ) [ fm 7] Npart

overlap

* Prediction: only modest increase in v2/€ from
RHIC to LHC due to longer evolution

=For fixed n/s!



Viscous Hydro RHIC = LHC

Luzum and Romatschke, TrLHe (T =1fm)
Phys. Rev. Lett. 103:262302, 2009

RHIC Glauber s
RHIC CGC
LHC Glauber
LHC CGC
PHOBOS/CGC
PHOBOS/Glauber
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9
8
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3
2
1
5 0
(1S gvertap) (AN /dY)[fm 7]

* Prediction: only modest increase in v2/€ from
RHIC to LHC due to longer evolution
=For fixed n/s!
— But, n/s expected to decrease @ larger T

=T dependence poorly known, not in any
hydrodynamic calculation (must be solved!)



Elliptic Flow @ LHC

Can change
horizontal
scale by x2

59 @ LHC

25 30 35
(1/S) dN_, /dy

 LHC data will provide an essential test of our
understanding of elliptic flow data @ RHIC

—And test whether QGP is still strongly coupled

 But RHIC measurements will continue to provide
new tests

— e.g. do thermal photons/di-leptons have flow imprint?



“Modern” Vz/e : STAR, PHOBOS
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*v2, dN/dn experimentally measured

e g, S (transverse area) from collision geometry

— Glauber - “phenomenological” particle production
— CGC - Saturation (KLN)




Viscous Hydro + Hadronic Transport

Heinz and Song, INT Workshop “Quantifying the Properties of
Hot QCD Matter” http://www.int.washington.edu/PROGRAMS/10-2a/

Ideal Hydro Ideal Hydro

eal Hydro

£ PHOBOS Glauber {v,{Trk}, part€ }: Au+Au (> PHOBOS CGC (v, {Trk}, parte): AutAu

> STAR (preliminary) Gluaber (\v:{l"l'l’('}. part. €{2}); Aut+Au 05 O STAR (prelim C}, part.e{2}); Aut+Au
— ideal hydro (Glauber) Tdec =100 MeV; Au+Au — ideal hydro (Glauber) Tdec =100 MeV; Au+Au
B viscous hydro (Glauber 1/s=0.08) + URQMD; Au+Au B viscous hydro (Glauber 1/s=0.08) + URQMD: Au+Au

30 40 20 30 40
(1/S)dN/dy (fm ) (1/S)dN/dy (fm )

 Most complete hydrodynamic calculation yet

— Viscous hydrodynamics + hadronic transport

— With Lattice QCD + hadron resonance gas EOS
=“minimum” viscosity
= Preference for saturation initial conditions (?)



http://www.int.washington.edu/PROGRAMS/10-2a/
http://www.int.washington.edu/PROGRAMS/10-2a/

Penetrating Probes of Created Matter
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e Use self-generated hard quarks/gluons/photons
as probes of initial (early) medium properties



“Jet Quenching” @ RHIC

e (QCD) Energy loss of (color) charged particle
— Dominated by medium-induced gluon radiation (?)

— Strong coherence effects for high-p; jets

=>Virtual gluons of high-p; parton multiple scatter
in the medium and are emitted as real radiation

%quwmm@mm LN
T .

@RHIC measure using:
>High-p, single hadrons

» Di-hadron correlations



“det” Quenching at RHIC

Single hadron but not y di-jet disappearance via
suppression di-hadron Ad correlations

PHENIX Au+Au (central collisions):

] Direct y
A 70 Preliminary
(] n
GLV parton energy loss (ng/dy =1100)

— P+p min. bias
*  Au+Au central

P ——— I

10 12 14 16 18 20
p; (GeV/c)

* RHIC results have clearly established “jet
quenching” as an experimental fact

—By using single hadrons or di-hadrons (?)

—Where are the jets?

=Hard @ RHIC due to soft background. >



Quenching: Quantitative Difficulties

e Compare different S T
dE/dx calculations 06k I\”\f.““k””
to PHENIX 7% data. [kl

— Different
approximation |
schemes 0.6k = = HTp=75m.8,= 19 Gevim.c =02

e s ASW. b=75fm. K=36

 Result: factor of 4
variation in g .

— Approximations pp (GeVic)
clearly not yet
under control

=Data currently
cannot not help
discriminate

Extracted transport
parameter ¢ = {(k%.)/L

4.3 GeV?/fm




Problem with relying on hadrons

Energy loss bias

— Hadrons biased to jets
that lose the least energy

= geometry
= radiation fluctuations

e Averaging

— Hadron measurements
average over jet energies
= Indirect measurement
of jet quenching
* Rates

— Suffer from steep
fragmentation function

= Use full jets

Wicks et al (GLV + collisional)




True Jet measurements in progress

Au+Au 0-20% pl":‘ ~ 21 GeV

STAR preliminary

-
o

pt per grid cell [GeV]
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Jet Measurements @ LHC

(h"+h )2, 8" = 5500 GeV

u - ,,‘-‘:,.,-"‘ SSF?F)GH COmparison Of Siﬂg'e
(h"+h )2, 5" = 200 GeV .
——— P’ &7 =200 G¥ h'gh‘pT hadl'On

e (W +h )2, 27 = 17 GeaV

cross-sections at
different energies

Jet spectra change
similarly
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e Large increase in hard cross-sections from
RHIC to LHC, range extended by > x10

— Soft background expected to increase by ~ x3.

* And large-acceptance detectors with electro-
magnetic + hadron calorimeters.



Quenching as Modified Parton Shower

* One way to describe
medium-induced
energy loss

— Enhancement of
splitting functions

e Softens the hadron x
distribution in jet
— Strongly enhanced
production at small x
e Broadens kr spectrum
at low kr, softens at
large kr

Borghini and Wiedemann
L PoS EPS-HEP2009:026,20009.

dt,
* OPAL, Vs=192-209 GeV
i wcuum, Ei =100 GeV _
* TASSO, Vs=14 GeV
| === in vacuum, E;,=7 GeV
in medium, Eje,=7 (}c\"v,"

(&) Borghini arXiv:0902.2951v2

10 —

MLLA, E=100 GeV
— f,.,=1.E=100 GeV

1 -~ MLLA, E=40 GeV
— [, =0.8.E=40 GeV
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10°

10"
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PHENIX: Heavy Quark Quenchin

e Currently, best measurements of heavy quarks
via semi-leptonic decays: single e* + e- spectrum

— Details re: background & subtraction not presented

pP-p compared w/ FONLL Au+Au compared w/ p-p
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Heavy Flavor Quenching, Theory

| van Hees et al. (ll) —

oo ) 3/(2aT) Moore &

) 12/(2aT) Teaney (Il

e “Standard” radiative
+ collisional energy
loss calculations that b, [Gevic]

reproduce n° data e Calculations with heavy
cannot reproduce flavor diffusion & “drag”
single electron can describe single
Ssuppression electron suppression

and single electron v2



Heavy Quark Quenching: AdS/CFT

Horowitz and Gyulassy, Phys.Lett.B666:320-323,2008

 Heavy flavor
measurements: o — pacp Rase, PHOBOS

— — pQCD Rad+El, KLN
-— - AdS/CFT D=3, PHOBOS

Charm

— robust test for o
weakly (pQCD) or ‘
strongly coupled
quenching.
— Due to explicit
dependent of
AdS/CFT dpl/dt )
on quark mass. - — PoCD o RS
- ~. pQCD Rad, G - 40
e Measurements o — heserT - prsos
willbe made at  |EE¥a RS
RHIC (luminosity [ s R

upgrades) & LHC




summary

* Three open problems in understanding initial
conditions for and properties of Quark Gluon
Plasma on which LHC will provide critical insight

— Initial conditions

=Can A+A initial conditions @ RHIC and/or LHC be
described within the framework of saturation

» Technical issue: validity of kr factorization (Raju)

— Collective evolution of QGP, hydrodynamics and QGP
viscosity

=Essential test of paradigm developed @ RHIC at
higher temperatures / particle densities

=Continued dominance of strong coupling?
— Jet quenching: direct probe of QGP

= Full jet measurements crucial for realization of
“jet tomography”



i Drift Pixel

Heavy lon Experiments @ LHC

nl \ o - —— "N

(FMD

CHAMBERS
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* You will have to take my word that these three
experiments can perform the measurements
required to address above physics

=And much, much, much more.

e Extraordinary complement of experiments that
broadens the scientific reach of LHC



The Big Picture

 We know that strong interactions are well
described by the QCD Lagrangian:

Locp = —3F2 Ft =3, n (& — gV Afta — mn) (L
=Perturbative limit well studied

* Nuclear collisions provide a laboratory for
studying QCD outside the large Q2 regime:

— Deconfined matter (quark gluon plasma)
=“Emergent” physics not manifest in Laco
= Strong coupling = AdS/QCD (?)

— High gluon field strength, saturation
= Unitarity in fundamental field theory

* Only non-Abelian FT whose phase transition &
multi-particle behavior we can study in lab.



Jet Modifications: Expectations
Wiedemann: Quark Matter 2009
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e Softening and angular broadening of
fragmentation due to medium.




Thermal Photons
PHENIX, arXiv:0804.4168v1 [nucl-

e PHENIX measurement
Aulu 0-20% x102 Of prompt phOtonS

AuAu 20.40% x10 — Clear “thermal” excess
PP at low pr Tavg~ 200 MeV

— But T is time dependent
e Hydrodynamics:
=Tinit > 300 MeV
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TABLE I: Summary of the fits. The first and second errors
are statistical and systematical, respectiygly

centrality dN/dy(pr > 1GeV /¢ T (MeV) v2/DOF
0-20% 1.10 + 0.20 £+ 0.30 221 £ 23 + 18 3.6/4
20-40% 0.52 £ 0.08 £ 0.1 215 + 20 £+ 15 5.2/3
MB 0.33 + 0.04 + 0.09 224 4+ 16 +19




Chiral Magnetic Effect @ RHIC?

Region of non-zero winding #

e Chiral magnetic effect:
— Generates charge separation 1 to event plane

— Requires magnetic field generated by incident nuclei
in non-central collisions



From INT Workshop Talk by V. Kock

3P correlations: Voloshin (04)
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e Data suggest a charge separation consistent
with the proposed chiral magnetic effect

— But, Koch: separation may in fact be in plane not L

— Many other critiques ... too early to conclude!

CME expectation




A-A Hard Scattering Rates

* For “partonic” scattering or
production processes, rates
are determined by T,g

( ) fdz pnucleon(z’rt)

Tap = [dif L Ta(|7L|)TB(|b — 71])

— integrated A-A parton luminosity
normalized relative to p-p

e |f factorization holds, then

thard = do},4rq Tap(b)

— Degree to which R _
factorization is violated g dgﬁ_pd Tap(b)
ar



PHENIX: p-p Baseline

PHENIX, p-p r°

Phys. Rev. D76:051106, 2007 PHENIX, p-p prompty
Phys. Rev. Lett

98:012002,2007
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— NLO pQCD
(by W.Vogelsang)
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STAR Experiment: “det” Observations

proton-proton jet event

> In Au-Au collisions we
see one “jet” at a time

» Strong jet quenching
» Enhanced by surface bias

Analyze by measuring (azimuthal)
angle between pairs of particles
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di-hadron probes of quenching

Au+Au, 20-40%  Au+Au, 0-5% Near side, IA¢l <0.63 Away side, IA¢ - nl < 0.63
- - - » d+Au min bias
Au+Au 20-40%
* Au+Au 0-5% |
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Zr = pT(assoc) / pT(trig)

e STAR:

— With increasing hadron pT di-jet signal re-appears

— But, strength is still suppressed relative to baseline
=|In this case d+Au = p+p

— And similar results from PHENIX




J/Y Production / Dissociation

* J/Y has long been
considered good
prObe for 06 W0
deconfinement g %‘; §05 ° o

lyl<0.35 syst 12%

— Debye screening of [ 12<iyic2.2 syst 79 o
c-cbar state

 Glossy over many
important details:

— Suppression at RHIC
~ consistent with
SPS data (Vs =17
GeV) at mid-rapidity.
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J/Y Production / Dissociation (2)

Capella, Kaidalov, ArXiv 0902.4662

* e'e’ PHENIX (lyl<0.35) - ' = w'w PHENIX (lykef1.2,2.2))
-- - shadowing shadowing

e - === + absorption
+ dissociation C =059 : ==+ dissociation

~ 4 recombination ~= 4+ recombination

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
part part

e Multiple effects: (but not feed-down)

— shadowing, “cold” nuclear break-up, “co-mover”
dissociation, recombination

=Can (approximately) describe suppression at mid-
rapidity and forward rapidity.
=Recombination of c-cbar = J/\p non-negligible



J/Y Production / Dissociation (3)

® STAR Cu+Cu 0-20% ==~ AdS/CFT+Hydro

------- 2-Component
¥ STAR Cu+Cu 0-60% —— charm quark

O PHENIX Cu+Cu 0-20% -.-.-. heavy resonance

e pt dependence provides valuable discrimination

— Currently best description is calculation accounting
for B feed-down, leakage from periphery

— But, sensitive to initial J/Y production mechanism
=p-p data (especially polarization)



Strong Heavy Flavor Suppression

PHENIX: PRL98(2007)172301 STAR: PRL98(2007) 192301

STAR charged hadrons P, > 6 GeV/c

I:DVGLR
. Il: BDMPS c+b
0-10% central = == Armesto et al. (l) Ill: DGLV R+EL

IV:van Hees EL

[ ] vanHeesetal.(ll) --=== V:BDMPSc

3/(2rT) Moore &
12/(2T) Teaney (lll)

 Radiative energy loss calculations cannot
reproduce heavy flavor measurements

— Unless B contribution is neglected (reject!)

 Best description of data using collisional
energy loss + diffusion

= With large diffusion constant (strong coupling!)



HERA: Geometric Scaling (saturation?
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— Introduce an x-dependent Qs
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A+A Charged multiplicity: saturation(?
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Armesto, Salgado, Wiedemann
Phys. Rev. Lett. 94 :022002,2005

e Extension of geometric scaling
analysis to nuclear targets

e Using k; factorization calculate
mult. (parton-hadron duality)

e Compare to PHOBOS data
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Elliptic Flow and System Size

PHOBOS

Au+Au

200 GeV, Au+Au, tracks
200 GeV, Au+Au, hits
200 GeV, Cu+Cu, tracks
200 GeV, Cu+Cu, hits

e Totally unexpected (unphysical) result:
= More collectivity in smaller system ??




Elliptic Flow and System Size

Au+Au

200 GeV, Au+Au, tracks
200 GeV, Au+Au, hits
200 GeV, Cu+Cu, tracks
200 GeV, Cu+Cu, hits
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e Totally unexpected (unphysical) result:
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The Problem: Initial State Fluctuations

PHOBOS
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Jet Quenching, Medium Response(?)

 We see two strong modifications of jet shape in
Au+Au collisions

— Extra peaks in azimuthal angle distribution
— Broadening of jet in n (longitudinally)
= Neither of these effects is yet understood

= Strong coupling effects? we don’t know yet.



v2 scalin

0.3

o '+ (PHENIX)
= K'+K™ (PHENIX) ©
* K§ (STAR)
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® '+ (PHENIX)
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=+= (STAR)

KE, (GeV)
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=+Z (STAR)
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Au+Au minimum-bias
@ n=0 (important)

 Departure from mass
independent v2(KEr)
due to incomplete
thermalization at
“high” p1 (?)

e Recombination:
- U2 X Tig (?)

*Soplot V2 _ KEbT

VS
Nq Nq

=Universal curve
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Participant region

Spectators
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Charged particle multiplicity

* Due to strong coherence in soft processes
— Soft production X Npart (no factorization)

e Factorization in hard processes
— Hard production & Nco

Try NAS® = NIZ (55 Nyare + 2Neou)

=Small hard contribution (x <~ 0.1)



