Recent Results on Structure Functions

Haiyan Gao Duke University Durham, NC, U.S.A.

Outline

- Introduction
- Unpolarized nucleon structure
- Longitudinal (transverse) spin structure
- 3-dimensional Structure of nucleon
 - Transverse momentum dependent parton distributions (TMDs)
 - Generalized parton distributions (GPDs)
- Summary and outlook

QCD: still unsolved in non-perturbative region

- 2004 Nobel prize for ``asymptotic freedom"
- non-perturbative regime QCD ?????
- One of the top 10 challenges for physics!
- QCD: Important for discovering new physics beyond SM
- Nucleon structure is one of the most active areas

Lepton Scattering ----- A powerful tool

Cross section

Universal Parton Distribution

Drell-Yan and DIS cross sections are well described by Next-to-Leading Order QCD

Incl. HERA I data and PDF fit

- complete HERA I combined incl. cross sections
- O(1%) precision for $10 < Q^2 < 100 \text{ GeV}^2$
- sole input for HERAPDF1.0
- → precise PDFs in the region relevant for LHC

K. Krüger

Recent Results from the H1 Experiment

4

Plenary talk by Emmanuel Sauvan, Tuedsday

Talk 1136 by V. Radescu

JHEP 1001:109,2010 →S. Habib [169]

Nucleon Spin Structure

- Understand Nucleon Spin in terms of quarks and gluons (QCD).
 - Nucleon spin is ½ at all energies.

- Small contribution from quarks and gluons' intrinsic spin
- Orbital angular momentum of quarks and gluons is important
 - Understanding of spin-orbit correlations.

Longitudinal Spin Structure

Virtual photon 3-momentum 9

g_{1L}

Probability for quark polarized in the nucleon spin direction

 g_1 and g_2 the spin dependent structure functions

Experiments @Lepton facilities

E80, E130	$\vec{\mathrm{e}}~\vec{\mathrm{p}}$	$\leq 20~{\rm GeV}$
EMC	$ec{\mu}~ec{ m p}$	100–200 GeV
E142, 143	$\vec{e}~\vec{p},\vec{n},\vec{d}$	$\leq 28~{\rm GeV}$
SMC	$\vec{\mu} \ \vec{\mathrm{p}}, \vec{\mathrm{d}}$	100, 190 GeV
E154, 155	$\vec{e}~\vec{p},\vec{n},\vec{d}$	$\leq 50~{\rm GeV}$
HERMES	$\vec{e}~\vec{p},\vec{n},\vec{d}$	27.5 GeV
COMPASS	$\vec{\mu} \ \vec{\mathrm{p}}, \vec{\mathrm{d}}$	160 GeV
HALL A	\vec{e} \vec{n}	6 GeV
CLAS	$ec{\mathrm{e}}~ec{\mathrm{p}},ec{\mathrm{d}}$	6 GeV

<image>

Jlab - CLAS, Hall A

Horst Fischer DIS2010

Proton-Proton Scattering Experiments

RHIC @ BNL: Proton-Proton √s=200 /500 GeV ~50% polarization Lumi: L/T 48/18 pb⁻¹

Horst Fischer DIS2010

Talks by Surrow 636, Haggerty 1013

Global NLO QCD Analysis

Summary Gluon Polarization

Presently all Analysis in LO only

See Talk 1193 by F. Kunne

Horst Fischer DIS2010

Gluon Polarization from RHIC

STAR PV SSA results from W production (B. Surrow, Talk 636) Horst Fischer DIS2010

Parton Distributions (CTEQ and DSSV)

0.4 $x(\Lambda n + \Lambda n)$ xAu, 0.2 $x(\Delta d + \Delta \overline{d})$ x∆d, 0.2 x∆ā x∆u 0.04 0.04 0.02 0.02 0 -0.02 -0.02 DSSV DSSV $\Delta \chi^2 = 1$ DNS -0.04 -0.04 DSSV $\Delta \chi^2 = 2\%$ GRSV 0.3 x∆g xΔs 0.04 0.2 0.02 0.1 0 -0.02 -0.1 GRSV maxg -0.04 GRSV ming -0.2 10 -2 10 -1 10⁻² 10 -1 x_{Bj} x_{Bi}

Polarized PDFs

Stefano Forte Talk 509

DSSV, PRL101, 072001 (2008)

 $x^* f(x, \mu=2 \text{ GeV})$

• Parity-violating single-spin asymmetry $W^+/W^- A_L$ results

STAR Preliminary Run 9 (p+p Js=500 GeV) $A_L(W^+) = -0.33 \pm 0.10(\text{stat.}) \pm 0.04(\text{syst.})$ $A_L(W^-) = 0.18 \pm 0.19(\text{stat.}) \stackrel{+0.04}{-0.03}(\text{syst.})$

- $A_L(W^+)$ negative with a significance of 3.3 σ
- AL(W-) central value positive
- Systematic errors of A_L under control
- TPC charge separation works up to $p_T \sim 50 GeV$
- Measured asymmetries are in agreement with theory evaluations using polarized pdf's (DSSV) constrained by polarized DIS data
 - \Rightarrow Universality of helicity distribution functions!

16

Transverse Spin Structure

Virtual photon 3-momentum 9

Longitudinal Spin structure function: g_{1L} Its transverse spin counter part (**Transversity**): h_{1T}

- Some characteristics of transversity
 - $h_{1T} = g_{1L}$ for non-relativistic quarks
 - No gluon transversity in nucleon
 - Chiral-odd → difficult to access in inclusive DIS
 - Soffer's bound
 - $|h_{1T}| <= (f_1 + g_{1L})/2$

Q: how about quark transverse momentum ? 3-D description in momentum space?

Transverse Momentum-dependent parton distributions (TMDs)

At leading twist 8 total, only 3 TMDs non vanishing upon integrating over transverse momentum of the quark

$$f_{1} = \bigcirc$$

$$g_{1L} = \bigcirc \longrightarrow \longrightarrow$$

$$h_{1T} = \bigcirc \longrightarrow \longrightarrow$$

So how to study transversity and other TMDs experimentally?

All Leading Twist TMDs

Access TMDs through Hard Processes

Partonic scattering amplitude

- Fragmentation amplitude
- Distribution amplitude

 $f_{1T}^{\perp q}(SIDIS) = -f_{1T}^{\perp q}(DY)$ $h_1^{\perp}(SIDIS) = -h_1^{\perp}(DY)$

Access Parton Distributions through Semi-Inclusive DIS

 $S_{\rm L}$, $S_{\rm T}$: Target Polarization; λ_e : Beam Polarization

Separation of Collins, Sivers and pretzelocity effects through angular dependence

$$\begin{aligned} A_{UT}(\varphi_h^l,\varphi_S^l) &= \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \\ &= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S) \\ &+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S) \\ &A_{UT}^{Collins} \propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp} \\ &A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1 \\ &A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} \end{aligned}$$

SIDIS SSAs depend on 4-D variables (x, Q^2 , z and P_T) Large angular coverage and precision measurement of asymmetries in 4-D phase space is essential.

,,,sin() from transv. pol. H target `Sivers' moments

Collins' moments

nes

- Non-zero Collins asymmetry
- Assume $\delta q(x)$ from model, then H_1 _unfav ~ - H_1 _fav
- H₁ from Belle (arXiv:0805:2975)

- •Sivers function nonzero $(\pi^+) \rightarrow$ orbital angular momentum of quarks
- Regular flagmentation functions

Klaus Rith, Talk 1194

Transversity Distributions

A global fit to the HERMES p, COMPASS d and BELLE e+e- data by the Torino group, Anselmino et al., arXiv:0812.4366

Solid red line : transversity distribution, analysis at Q²=2.4 (GeV/c)²

Solid blue line: Soffer bound $|h_{1T}| \le (f_1+g_{1L})/2$ GRV98LO + GRSV98LO

Dashed line: helicity distribution g_{1L} , GRSV98LO

Sivers asymmetry - proton

comparison with theory

... most recent predictions from *M. Anselmino et al.* based on the fit of HERMES proton and COMPASS deuteron data

Anna Martin

See Talk 1193 by F. Kunne

June 22, 2010

Jefferson Lab Experimental Halls

HallA: two HRS'

Hall B:CLAS

Hall C: HMS+SOS

JLab E06-010 Experiment

- Polarized ³He Target, > 60% with beam, world record
- Polarized Electron Beam
 - $-\sim 80\%$ Polarization
 - Fast Flipping at 30Hz
 - PPM Level Charge Asymmetry controlled by online feed back
- BigBite at 30° as Electron Arm
 P_e = 0.7 ~ 2.2 GeV/c
- HRS_L at 16^o as Hadron Arm
 P_h = 2.35 GeV/c

6 GeV Preliminary Results

³He Target Single-Spin Asymmetry in SIDIS: JLab E06-010

To extract information on neutron, one would assume :

 ${}^{3}\text{He}^{\uparrow} = 0.865 \cdot n^{\uparrow} - 2 \times 0.028 \cdot p^{\uparrow}$

³He Collins SSA are not large (as expected).

³He Sivers SSA are smaller than expected (Vogelsong and Yuan 2006), follow the trend of Anselmino et al. 2009.

JLab Upgrade to 12 GeV

Solenoid detector for SIDIS at 11 GeV Experiment E12-10-006

Power of SOLID

Generalized Parton Distributions (GPDs)

Extend longitudinal quark momentum & helicity distributions to transverse momentum distributions - TMDs

Next talk by Dieter Mueller, Talk 228 (M, Guidal), Talk 1116 (V. Kubarovsky) K. Rith , Talk 1194 on HERMES GPD program

3 dimensional imaging of the nucleon

GPDs depend on 3 variables, e.g. $H(x, \xi, t)$. They describe the internal nucleon dynamics.

Hard exclusive meson productions
 (quark flavor filter) access GPDs

Deeply Virtual Compton Scattering & GPDs

Model independent extraction of GPDs Talk 228: M. Guidal Talk 1194 (K. Rith) on HERMES DVCS Virtual Exclusive Processes - Kinematics Coverage of the 12 GeV Upgrade

At 12 GeV, CEBAF will be ideal for GPD COMPASS II, Talk 1193 F. Kunne studies using CLAS12

- Major progress made in unpolarized and polarized structure functions
- Frontiers in nucleon structure go beyond colinear, 1-D picture
 - three-dimensional imaging of the nucleon through GPDs, revealing hidden aspects of its internal dynamics
 - TMDs
 - Direct link with orbital motion (orbital angular momentum)
 - Transverse motion: spin-orbit correlations, multi-parton correlations, dynamics of confinement and QCD
- JLab 12-GeV upgrade and COMPASS II will provide excellent opportunities to map out the 3-dimensional structure of the nucleon

Thanks to Jian-Ping Chen, Latifa Elouadrhiri, Horst Fischer, Achim Geiser, Michel Guidal, M, Huang, K. Krueger, Anna Martin, Dieter Mueller, X. Qian, Emmanuel Sauvan, Bernd Surrow, C.-P. Yuan,...

Supported in part by U.S. Department of Energy under contract number DE-FG02-03ER41231