Rare K-meson and lepton decays

A.M. Baldini – INFN Pisa

OUTLINE Ultra-rare K Decays

(Pardon!)

1)

- The contribution to
 these processes due to the
 Standard Theory is strongly
 suppressed (<10⁻¹⁰) and calculable
 with excellent precision (~%)
- They are very sensitive to possible contributions from New Physics

GGI March 24, 2010

11

2)
$$R_{K} = \frac{\Gamma(K^{\pm} \to e^{\pm}\nu)}{\Gamma(K^{\pm} \to \mu^{\pm}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \cdot \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \cdot (1 + \delta R_{K}^{rad.corr.})$$
$$= (2.477 \pm 0.001) \times 10^{-5} \quad \text{(V. Cirigliano, I. Rosell, JHEP 0710:005 (2007))}$$

New Physics could contribute to up (Masiero, Paradisi, Petronzio, PRD 74, 2006) 1%

In the lepton case SM prediction unobservable! τ ->lx, $\mu \rightarrow e \gamma$ Observation = New Physics (Isidori's talk)

$K^+ \to \pi^+ \nu \overline{\nu}$ History

J. Lewis Poster at this Conference

E787/E949 Final: 7 events observed

$$B(K^+ \to \pi^+ \nu \overline{\nu}) = 1.73^{+1.15}_{-1.05} x 10^{-10}$$

Standard Model:

$$B(K^+ \to \pi^+ \nu \overline{\nu}) = (0.85 \pm 0.07) x 10^{-10}$$

Tevatron used as a stretcher 200 events/year

At CERN SPS

 $\mathbf{P}_{\!\!\mathbf{K}}$

Decay	BR
$K^+ \rightarrow \mu^+ \nu (K_{\mu^2})$	0.64
$K^+ \rightarrow \pi^+ \pi^0 (K_{\pi 2})$	0.21
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	
$K^+ \rightarrow \pi^+ \pi^0 \pi^0$	0.07

 P_{ν}

- R&D/Construction phase
- Technical run: end of 2012

Drawing by Ferdinand Hahn

Total Length 270m

NA62 Sensitivity

Decay Mode	Events
Signal: $K^+ \rightarrow \pi^+ v \bar{v}$ SM[flux = 4.8×10 ¹² decay/year]	55 evt/year
$K^+ \rightarrow \pi^+ \pi^0 \ [\eta_{\pi^0} = 2 \times 10^{-8} \ (3.5 \times 10^{-8})]$	4.3% (7.5%)
$K^+ \rightarrow \mu^+ \nu$	2.2%
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%
Other 3 – track decays	≤1.5%
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7%
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible
Expected background	≤13.5% (≤17%)

Definition of "year" and running efficiencies based on NA48 experience: ~100 days/year; 60% overall efficiency

GGI March 24, 2010

Augusto Ceccucci

30

Meanwhile...from 48 to 62

 $K \rightarrow ev/K \rightarrow \mu\nu$

Data taking:

Four months in 2007 (23/06-22/10):

~400k SPS spills, 300 TB of raw data (90 TB recorded), data preparation finished Two weeks in 2008 (11/09 - 24/09):

Special data sets allowing reduction of systematic uncertainties

Magnetic spectrometer
Scintillator hodoscope
Liquid Kr EM calorimeter

NA48

Large common part (topological similarity)

- One reconstructed track
- Geometrical acceptance cuts
- Decay vertex defined as closest approach of track + nominal kaon axis
- Veto extra LKr energy deposition clusters
- Track momentum 13-65 GeV/c

Kinematic separation

Missing mass $M_{miss}^2 = (P_K - P_l)^2$

 P_{K} average measured with $K^{\pm} \rightarrow 3\pi$ decays

 \Rightarrow No $K_{\mu 2}$ background in K_{e2} only for momenta < 25 GeV/c ($\sim 15 \,\%$ of data)

Particle identification

E/p LKr energy deposit / track momentum

<0.85 for muons, electrons: (0.90-0.95) <E/p <1.10

 \rightarrow powerful μ^{\pm} suppression in e^{\pm} sample ($\sim 10^6$)

/ NA62 - p. 8

 $P_{\mu e} / R_{K} \sim 10 \,\%$ \Rightarrow $K_{\mu 2}$ decays represent the major background

Solution: direct measurement of $P_{\mu e}$

 \Rightarrow Lead wall (9.2 X_0) in front of LKr (between the hodoscope planes)

$40\,\%$ of data set

 $59963~{\rm K^+} \rightarrow {\rm e^+}\nu~{\rm candidates}$ $(99.27\pm0.05)~\%~{\rm electron~ID~efficiency}$ ${\rm B/(S+B)}=(8.8\pm0.3)~\%$

cf. KLOE: 13.8k candidates (both $\rm K^+$ and $\rm K^-$), $\sim 90\,\%$ electron ID efficiency, $16\,\%$ bkg.

18.03M ${
m K}^+ \rightarrow \mu^+ \nu$ candidates with very low background ${
m B/(S+B)} = (0.38 \pm 0.01)\,\%$

World average	$ m R_{K} imes 10^{5}$	Precision
March 2009	2.467 ± 0.024	0.97 %
June 2010	2.487 ± 0.012	0.48%

- **●** Final result based on ($\sim 40\,\%$) of the NA62 $\rm K_{e2}$ sample: $\rm R_{\rm K} = (2.486 \pm 0.013) \times 10^{-5}$ with a record accuracy of $\sim 0.5\,\%$, being compatible with the SM prediction.
- With full data sample, overall uncertainty of 0.4 %, as declared in the proposal, is within reach.
 A Winbort #
- Future experiments for further improvement: NA62 phase II (2013-2015) and KLOE-2 (>2010) aim at ~0.2 % and ~0.4 % precision.

A. Winhart this Conference + Poster for $\pi\mu\mu$ and πee

Kloe: F. Archilli, Poster at this Conference

- 1. Hermetic veto with high detection efficiency: To count number of photons.
 - $K_L \rightarrow \pi^0 \pi^0$ ($\rightarrow 4\gamma$) is most serious background by missing 2 γ .
- 2. Pencil Beam : to obtain kinematical constraints. \rightarrow K₁ decay on Z-axis.
 - reconstruction of decay vertex(Zvtx) and transverse momentum(P_T) of π^0 .

Previous experiment: Sensitivity in KEK-E391a

Run	Run period	POT	-	
Run-1	FebJun. 2004	2.1×10^{18}		PRD 74,051105(R) (2006)
Run-2	FebApr. 2005	1.4×10^{18}	\longrightarrow	PRL 100,201802 (2008)
Run-3	OctDec. 2005	1.1×10^{18}		PRD 81,072004 (2010)

Number of K_L decay

$$(8.70 \pm 0.17_{\rm stat.} \pm 0.59_{\rm syst.}) \times 10^9$$

Signal Acceptance

$$A_{\text{signal}} = (1.06 \pm 0.08)\% \text{ (for Run-2)}$$

 $A_{\text{signal}} = (1.01 \pm 0.06)\% \text{ (for Run-3)}$

Single event sensitivity

$$(1.11 \pm 0.02_{\rm stat.} \pm 0.10_{\rm syst.}) \times 10^{-8}$$

Br(
$$K_L \rightarrow \pi^0 \nu \nu$$
) < 2.6X10⁻⁸

Strategy

- ✓ Step by Step approach.
- √ KEK-E391a (previous experiment)
 - →Establishment of experimental method.
- ✓ J-PARC Step-1 (E14 KOTO)
 - → First observation.
 - → Search for enhancement by New Physics.
- ✓ J-PARC Step-2

 → > 100 events

¹³ Measurement of K_L Yield by detecting $K_I \rightarrow \pi^+\pi^-\pi^0$

- ✓ No data for 16° extraction at 30GeV.
- ✓ Big differences betw. M.C. simulations.

MC package	#KL/2E+14pot
GEANT3	1.5x10 ⁷
GEANT4(QGSP)	0.88×10^7
GENAT4(QBBC)	1.0x10 ⁷
FLUKA	3.2x10 ⁷

1905 events were observed. \rightarrow 1.83x10⁷ K_L's/2x10¹⁴ p.o.t. (*preliminary number)

It corresponds to

Proposal-yield x 2.3
 (*MR DCCT normalization)

Poster K. Shiomi at this Conference

Leptons: $\tau \rightarrow I x$

KEKB/Belle

B-factory: E at CM = Y (4S) $e^+(3.5 \text{ GeV}) e^-(8 \text{ GeV})$

Good track reconstruction and particle identification Lepton ID ~ (80-90)% Fake ID ~ (0.1-3)%

 \Rightarrow

 $σ(ττ)\sim 0.9$ nb, $σ(bb)\sim 1.1$ nb

A B-factory is also a τ-factory!

World-largest data sample!

~ $9x10^8 \tau \tau$ at Belle

K. Hayasaka this Conference

K. Hayasaka this Conference

Vew Upper Limits on LFV τ Decay

Our sensitivity reaches O(10⁻⁸)!

8)! 100x more sensitive
35th ICHEP201 than CLEO's

 $\left(\frac{BR(\tau \to \mu \gamma)}{PR(\mu \to a \gamma)}\right) \approx 10^{4 \div 5}$

@ SuperB factories one order of magnitude improvement

K. Hayasaka this Conference

Signal and Background

Prompt Background

Accidental Background

$$B_{acc}\!\propto\!\delta E_e\!\cdot\!(\delta E_{\gamma})^2\!\cdot\!(\delta\vartheta_{e\gamma})^2\!\cdot\!\delta t_{e\gamma}$$

Angle Time

Back-to-Back Energy 52.8 MeV/c Same time

Radiative muon decay

Any angle < 52.8 MeV/c

Same time

γ BG

Accidental pileup Any angle

< 52.8 MeV/c

Flat

Dominant background is accidental.

Detector resolution is crucial.

MEG: The Experiment

PSI: most intense DC muon

COBRA Magnet

Drift chamber

Muon Beam

Stopping Target

Liquid Xenon
Scintillation Detector

Beam transport system stopping rate up to 108/sec on target

Various calibration and monitoring systems.

Gradient field SC magnet sweeps out high rate e+ quickly Constant bending radius of e+

Drift chamber

Made of light materials Precise measurement of positron tracks

Timing counter

Good time resolution Work in B-field

LXe gamma detector

Drift chamber

2.7 tons of liquid xenon
Good time, position energy resolution
Fast signal: pileup identification

Calibration and Monitoring

- PMT gain monitored by LED, QE by α
- Light yield monitoring (CW, CR, AmBe etc.)
- Cockcroft-Walton proton accelerator
 - 17.6MeV γ by Li(p,γ)Be reaction
 - Light yield monitoring & $\sigma_{_{\rm E}}$ at 17.6MeV

2008 physics run and shutdown: gaseous purification to increase light yield

Light yield became as much as expected And decay time of γ waveform changed

2009 physics run: no purification

Light yield monitoring: < 1% level

Time line and 2009 run

2008.sep-dec: Physics data taking

(lower efficiency and resolutions due to hardware problem)

2008 run result : Sensitivity = 1.3×10^{-11}

 $90\% \text{ U.L.} = 2.8 \times 10^{-11}$

2009 : Analysis of 2008 data Hardware upgrades

2009.nov-dec: Physics data taking

2009.dec-: Analysis of 2009 data

Hardware upgrades

Data samples

Analysis box (~10σ width)

- 48 ≤ E_v ≤ 58 MeV
- 50 ≤ E_e ≤ 56 MeV
- IT_{ev} I ≤ 0.7 ns
- $| \phi_{ey} |$, $| \theta_{ey} | \leq 50 \text{ mrad}$

Analysis box was blinded during calibration and optimization of physics analysis.

Time and Ey sideband

- Accidental background PDF was made directly from sideband data. (Important because dominating background is accidentals)
- Positron detector response is studied by using Michel positrons.
- Time resolution is measured by using RMD peak in low gamma energy sideband.

^{*}Angle is between gamma and flipped positron vectors.

Analysis Method

Extended unbinned maximum likelihood analysis on number of events

$$\mathcal{L}(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{BG}})$$

$$= \frac{N^{N_{\text{obs}}} \exp^{-N}}{N_{\text{obs}}!} \prod_{i=1}^{N_{\text{obs}}} \left[\frac{N_{\text{sig}}}{N} S + \frac{N_{\text{RMD}}}{N} R + \frac{N_{\text{BG}}}{N} B \right]$$

"BG" in this talk means accidental background.

Event types: Signal, RMD and Accidental background

Observables: E_Y, E_e, Relative time and Relative angle

- Fit is done for wide widow (about 10σ of each variable), and background events are fitted together.
- Fit is done by three independent likelihood analysis tools to check possible systematic effects.

- Event-by-event PDF
 - Position dependent PDF of gamma rays.
 - Two category PDF of positrons by reconstruction quality (fitting uncertainty etc.)
- Most of PDFs are made from data (next slide)
- RMD PDF is formed from theoretical shape and detecter response.

Normalization factor is obtained from number of observed Michel positrons taken simultaneously.

Preliminary

B.R. = Nsig $/ 1.0 \pm 0.1 \times 10^{12}$

RMD peak

Average 90% C.L. upper limit of toy MC with null signal.

Sensitivity: 6.1×10⁻¹²

Preliminary

Sideband fit result is consistent. Br $< 4 \sim 6 \times 10^{-12}$

Blue lines are 1(39.3 % included inside the region w.r.t. analysis window), 1.64(74.2%) and 2(86.5%) sigma regions. For each plot, cut on other variables for roughly 90% window is applied.

(Current B.R. upper limit is 1.2×10⁻¹¹ by MEGA)

ICHEP, Palais des Conarès, Paris, July22-28, 2010 R.Sawada for MEG collaboration

Positive Tey sideband

Event distribution after unblinding

Blue lines are 1(39.3 % included inside the region w.r.t. analysis window), 1.64(74.2%) and 2(86.5%) sigma regions. For each plot, cut on other variables for roughly 90% window is applied.

Fit Result

Preliminary

Nsig < 14.5 @ 90% C.L Nsig=0 is in 90% confidence region

Nsig best fit = 3.0

Fitting was done by three groups with different parametrization, analysis window and statistical approaches, and confirmed to be consistent (Nsig best fit = 3.0-4.5, UL = $1.2-1.5\times10^{-11}$)

Event display

One of the most signal-like events.

 $E_{v} = 52.25 \text{ MeV}$ $E_{e+} = 52.84 \text{ MeV}$ $\Delta\theta = 178.8 \text{ degrees}$ $\Delta T = 2.68 \times 10^{-11} \text{ s}$

Calorimeter PMT hit map

Spectrometer hits and a track

Each highly ranked event is checked carefully.

Check of events

High quality e+ track category events

Selected by number of drift chamber(DC) hits, E_e , θ_e , φ_e fitting uncertainties, track fitting χ^2 , r and z difference between timing counter hit and extrapolation of a track.

Events around signal region do not disappear by selecting high quality track events.

High quality fraction = 59%

Blue lines are 1(39.3 % included inside the region w.r.t. analysis window), 1.64(74.2%) and 2(86.5%) sigma regions. For each plot, cut on other variables for roughly 90% window is applied.

Prospects

- Possible improvements
 - Improvement of synchronization of waveform digitizer (DRS4) improves σ_τ
 - Possible better calibration with monochromatic positron beam and improve positron tracking
 - Noise reduction and electronics modification for DC
 - Refinement in calorimeter analysis
- 3 years physics data (2010-2012)
 - Sensitivity will reach our goal, a few x 10⁻¹³
 - Each detector performance could be improved further!

	2010 (preliminary)
Gamma Energy (%)	1.5 (w>2cm)
Gamma Timing (psec)	67
Gamma Position (mm)	5(u,v)/6(w)
e+ Timing (psec)	90
e⁺ Momentum (%)	0.7
e⁺ angle (mrad)	8(\phi)/8(\theta)
e+ - gamma timing (psec)	120
Muon Decay Point (mm)	1.4(R)/2.5(Z)
Stopping Muon Rate (sec4)	3x10 ⁷
DAQ time / Real time (days)	95/117
Sensitivity	2.0x10 ⁻²
BR upper limit	-

Summary

- Rare decay experiments are complementary to LHC in search of new physics
- New experiments in this field are (about) going to start data taking
- MEG will clarify the situation in its analysis box since it is now starting a long term stable data taking period
- Future experiments

COMET at JPARC (µ→e conversion): Y. Kuno Poster Mu2e at Fermilab: Y. Kolomensky Poster

Experiments at ProjectX

could maybe discriminate among different models

Performance

	2000	2000 (pvoliminova)
	2008	2009 (preliminary)
Gamma Energy (%)	2.0 (w>2cm)	2.1 (w>2cm)
Gamma Timing (psec)	80	>67
Gamma Position (mm)	5(u,v)/6(w)	←
Gamma Efficiency (%)	63	58
e+Timing (psec)	<125	←
e⁺ Momentum (%)	1.6	0.74(core)
e⁺ efficiency (%)	14	30~40%
e⁺ angle (mrad)	10(φ)/18(θ)	7.1(φ core)/11.2(θ)
e+ - gamma timing (psec)	148	142(core)
Muon Decay Point (mm)	3.2(R)/4.5(Z)	3.3(R)/3.4(Z)
Trigger efficiency (%)	66	83.5
Stopping Muon Rate (sec ¹)	3x10 ⁷	2.9x10 ⁷ (300µm)
DAQ time / Real time (days)	48/78	35/43
Sensitivity	1.3x10 ⁴¹	6.1x10 ⁻²
BR upper limit (obtained)	2.8x10 ⁴¹	1.5x10 ⁻¹¹

- In 2008, sensitivity was 1.3x10⁻¹¹, and our result was the BR UL 2.8x10⁻¹¹ (90%C.L.)
- In 2009, our sensitivity reached 6.1x10⁻¹², and the BR UL was 1.5x10⁻¹¹ (90%C.L., these numbers are preliminary).

Event distribution after unblinding

Blue lines are 1(39.3 % included inside the region w.r.t. analysis window), 1.64(74.2%) and 2(86.5%) sigma regions.

For each plot, cut on other variables for roughly 90% window is applied.

Numbers in figures are ranking by Lsig/(LRMD+LBG). Same numbered dots in the right and the left figure are an identical event.

Drift chamber

- 2008
 - Discharge problem reduced e⁺ detection efficiency and resolution for positron measurement
 - $\epsilon \sim 14\% (\sim 1/3)$, $\sigma_{\rm E}$, $\sigma_{\rm e}$ were worse
 - The problem was long term exposure to helium, fixed before physics run in 2009
- 2009
 - e⁺ detection efficiency (30~40%, including TC matching) and resolutions improved

