Prospects for Higgs Boson Searches with CMS

Marat Gataullin (Caltech) on behalf of the CMS Collaboration

> *ICHEP 2010 Paris, July 23 2010*

LHC at 7 TeV: 100 pb⁻¹ by Nov 2010 and 1 fb⁻¹ by end of 2011

Tevatron Run II Preliminary, L=2.0-5.4 fb⁻¹

LHC Landscape

Need to use the $\gamma\gamma$ mode where the QCD background is challenging.

7 TeV Projections (H→ZZ; WW; γγ)

- Started with results from our Higgs studies for 14 TeV and rescaled both signal and bkgd. to 7 TeV. "14 TeV" search methods were optimized for discovery: room for improvement.
- Systematic uncertainties also rescaled conservatively, and possible correlations taken into account.
- > Use σ (NNLO) for gg \rightarrow H (30% gain over NLO) , NLO for VBF & VH
- > Not correcting for higher acceptance at smaller \sqrt{s} , up to 20% effect.
- Uniform statistical analysis: use re-scaled event counts and reevaluated systematic errors; derive exclusions with modified frequentist (CL_s) and significance with profile likelihood.

Standard Model *H→WW→2ℓ2v*

Pros: Clean photon ID, projected 0.7% mass resolution.

<u>Cons</u>: High background rate; state-of-art ECAL calibration needed.
 However, for 110 GeV fermiophobic Higgs the production rate 4 times higher than for SM Higgs. The projected exclusion reach at 7 TeV is comparable to the current limits from LEP and Tevatron.

SM Higgs expected 95% CL exclusion range: 145-190 GeV. Projections are "indicative" and conservative.

MSSM Higgs pp \rightarrow bb Φ ; $\Phi \rightarrow \tau^+ \tau^-$

But this is not the end game !

- The current 7 TeV projections are quite conservative.
- Several analysis are being re-optimized and extra channels are being added to the mix.
- In the meantime: we continue commissioning the detector and validating our analysis methods.
 Showing just a few highlights.

❑ Transverse impact parameter resolution is better than 30µm. Crucial for Higgs mass reconstruction.

□ B-tagging performance is as expected.

Important for associated-bbar background rejection.

Muon ID is crucial for WW and ZZ channels \Box Fraction of tracks identified as muons measured in the inclusive QCD sample. After isolation it is reduced by 90%. \Box Isolation efficiency for $W \rightarrow \mu v$ agrees with expectation to

better than 1%.

- (see P. Gras' talk)
- CMS ECAL is made of 76K PWO crystals. Design-goal energy resolution is 0.5%: crucial for the di-photon channel search.
- Need to achieve in situ calibration precision of <0.5%</p>
- With 100 nb⁻¹, reached in situ 1.1% channel-to-channel precision in the central barrel using neutral pions and φ-invariance method.
 Limited by statistics not systematics (200 nb⁻¹ update: reached <1%).
 Dedicated calibration streams commissioned.

Electron ID and Fake Rate

• Both the inclusive and $W \rightarrow ev$ electron spectra agree well with expectations.

 Electron efficiency measured in situ. Good agreement between different methods and with simulation.
 Fake rates as low as <0.1%.

(see R. Salerno's talk)

MET reconstruction and calibration important for H→WW

- Noise in calorimeters is well understood and under control.
 Excellent transverse MET resolution obtained.
- Three methods: Calo (ECAL+HCAL); Track-corrected Calo; Particle flow (identifies individual stable particles in an event).

- CMS is making a good progress to a well-calibrated and understood detector, to be ready for Higgs searches
- With 1 fb⁻¹ at 7 TeV, CMS will begin to explore a sizable range of Higgs mass
 SM Higgs exclusion range: [145-190] GeV
 Low mass SM Higgs region will require more data
 MSSM Neutral Higgs discovery range: down to tange 20 for small m

 $\tan\beta$ ~20 for small m_A

BACKUP

- Use already approved results: started with public 14 TeV results and rescaled both signal and bkgd. to 7 TeV. Methods were optimized for discovery: room for improvement.
- Uniform statistical methods used and correlations in syst. uncertainties taken into account.
- > Rather conservative approach was adopted. $H \rightarrow ZZ, H \rightarrow WW$ and $H \rightarrow yy$ only were considered.

Background Cross Sections used

General background sources $\sqrt{s} = 14 \text{ TeV}$ $\sqrt{s} = \overline{7 \text{ TeV}}$ $\sqrt{s} = 10 \text{ TeV}$ process comment $\overline{W} \to \ell \nu$ 3*14253.7 3*9679.9MCFM NLO 3*20283.7 $DY(20-\infty) \to \ell\ell$ 3*3259.73*2323.6 3*1606.6MCFM NLO WW112.571.4 42.9MCFM NLO WZ31.418.3MCFM NLO 51.0ZZ15.69.9 5.9MCFM NLO tĒ MCFM NLO 918 165415Wt56.126.010.5MCFM NLO tq-t channel 244.6130.562.8 MCFM NLO tq-s channel MSTW 2008 NNLO 11.9 7.64.6 $W(\rightarrow \ell \nu) + \gamma$ 54.7*1.835.4*1.8 23.2*1.8NLO k-Factor from Bauer $Z(\to \ell\ell) + \gamma$ 17.5*1.811.3*1.8 7.3*1.8NLO k-Factor from Bauer

Fermiophobic Higgs: Back-of-Envelope

Fermiophobic/SM ratios

Fermiophobic/SM (see plot on the right)

gg→H disappears ⇒ loss of a factor of 10 in H cross section [blue line] Gain a large factor in BR(H→ $\gamma\gamma$) [black line] CS x BR larger than that of SM up to 130 GeV

If do <u>nothing</u> special (charateristic kinematics) for fermiophobic Higgs, r~4 for SM Higgs (see left plot) implies that Possibly exclude fermiophobic Higgs with m~110 GeV (see right plot), which is better than Tevatron, comparable to LEP limit