# Commissioning and Performance of the ATLAS Inner Detector with Proton Collisions at the LHC

\* Sub-detector status and performance
\* Latest Alignment Status
\* Tracking performance

Antonio Limosani on behalf of ATLAS The University of Melbourne, Australia

35th International Conference on High Energy Physics Palais des Congrés, Paris July 22-28, 2010



# **EXPERIMENT ATLAS Inner Detector**





Pixels

- Pixel detector, 1744 modules
- \* 3 barrel layers, 3 layers in each endcap
- Semiconductor Tracker (SCT)
  - Silicon Strip Detector, 4088 modules
  - # 4 barrel double-layers, 9 disks in endcap
- Transition Radiation Tracker (TRT)
  - Proportional drift tubes, 298K straws

- Total  $\phi$  coverage &  $|\eta| < 2.5$
- Immersed in 2 Tesla Solenoidal Field
- Intrinsic position resolution
  - \* 10(Pixels),17(SCT) and 130(TRT)μm in *r*φ
  - 115 (Pixels) and 580 (SCT-barrel) µm in z





**ICHEP 2010. PARIS. FRANCE** 

dE/dx (MeV g<sup>-1</sup> cm<sup>2</sup>)

Proton

Kaon

Pion

#### 10<sup>5</sup> 10 0.5 ATLAS Prelim Good Pixels>=3 10<sup>4</sup> Number of Events / 2 MeV 500 PNS 400 $10^{3}$ $\Phi \rightarrow K^+K^-$ Deuterium 300 10<sup>2</sup> 200 10 100 -0.5 -1 0 0.5 -1.5 1.5 2 2.5 **980** 1000 p (GeV)

Tracks with three pixel hits provide a useful dE/dx measurement

Time over Threshold is proportional to collected charge so is sensitive to the ionisation energy loss

Specific energy loss due to ionisation is modeled by Bethe-Bloch function. Parameters depend on

mass of ionising particle.







------

4



# ERIMENT TRT status and performance



- Fully integrated within ATLAS
- 98% functioning channels
- 4mm straws with drift time measurement for increased spatial resolution.



### TRT STRAW EFFICIENCY



# straws with hit / # straws crossed ~ 94% (95%) data (MC) in plateau region

## **TRT R-T RELATION**



Initial time offset determined per straw. Convert drift time to drift radius, R-T relation

2

# **EXPERIMENT** TRT Electron identification



- Particle ID (PID) by transition radiation (TR)
- TR produced when charged particle crosses boundary between materials with different dielectric constants (foils/fibers) and CO2
- \* Probability to emit photon is proportional to Lorentz boost ( $\gamma$ )
- \* Photon absorbed in straw gas (Xe(70%), CO<sub>2</sub>(27%), O<sub>2</sub>(3%)
- # High threshold hits indicate TR





Run Number: 154817, Event Number: 968871 Date: 2010-05-09 09:41:40 CEST

M\_\_\_\_= 89 GeV

### Z-ee candidate in 7 TeV collisions



## Latest Alignment Residuals



Track based alignment using a  $\chi^2$  minimisation approach is implemented to determine the absolute position of the Inner Detector modules.

#### **UNBIASED RESIDUALS** $\times 10^3$ ×10<sup>5</sup> 250 on tracks / 4 $\mu$ m Hits on tracks / 12 $\mu$ m Hits on tracks / 4 $\mu$ m 140 Post-Collisions Alignment 160 Post–Collisions Alignment Post-Collisions Alignment ATLAS Preliminary ATLAS Preliminary **ATLAS** Preliminary FWHM/2.35=141 µm FWHM/2.35=25 µm FWHM/2.35=42 µm Pixel barrel SCT barrel TRT barrel 140 Pre-Collisions Alignment Pre-Collisions Alignment Pre-Collisions Alignment 120 200 $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 7 \text{ TeV}$ FWHM/2.35=44 µm FWHM/2.35=144 um FWHM/2.35=34 um 120 Monte Carlo Monte Carlo Monte Carlo 100 FWHM/2.35=18 µm BARREL FWHM/2.35=34 µm FWHM/2.35=143 µm BARREL 100 BARREL 150 Hits 80 80 SC1 PIXEL 100 60 60 40 40 50 20 20 -0.2 0.1 0.2 -0.2 -0.10.1 0.2 -0.5 0.5 -0.10 0 0 Local x residual [mm] Local x residual [mm] Residual [mm] 300<sup>×10<sup>3</sup></sup> ×10<sup>3</sup> ×10<sup>3</sup> Hits on tracks / 12 $\mu$ m Hits on tracks / 4 $\mu$ m Hits on tracks / 4 $\mu$ m Post–Collisions Alignment Post–Collisions Alignment Post–Collisions Alignment ATLAS Preliminary 100 ATLAS Preliminary ATLAS Preliminarv 25 FWHM/2.35=20 µm FWHM/2.35=45 µm FWHM/2.35=162 um Pixel end-caps SCT end-caps TRT end-caps 250 Pre-Collisions Alignment □ Pre-Collisions Alignment Pre-Collisions Alignment $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 7 \text{ TeV}$ FWHM/2.35=178 μm FWHM/2.35=24 µm FWHM/2.35=87 µm 80 20 Monte Carlo Monte Carlo Monte Carlo 200 FWHM/2.35=135 µm FWHM/2.35=19 µm FWHM/2.35=38 µm **ENDCAP** ENDCAP **ENDCAP** 60 15⊢ 150 40 10 100 20 50 0.2 -0.1 0 0.2 -0.5 0 0.5 -0.2 -0.1 0 0.1 -0.20.1 Local x residual [mm] Local x residual [mm] Residual [mm]

Positive effect of collisions data is clearly evident in Pixels and in particular in SCT endcaps, highlighting the lack of illumination from cosmic rays

\* Post-Collisions alignment is approaching that of Monte Carlo.

ATLAS-CONF-2010-067

.AS



9

**ICHEP 2010, PARIS, FRANCE** 

## ATLAS **Track Pattern Recognition**



**ANTONIO LIMOSANI** 

- Inside "ATLAS New Tracking" reconstruction
- \* Begins with seed finding in the innermost silicon layers. Three space points to form a seed.
- \* Final track candidates are chosen on the basis of a "Track Score" by the "Ambiguity Solver"
- Good agreement between MC and data in accepted tracks.







### ICHEP 2010, PARIS, FRANCE

#### **ANTONIO LIMOSANI**



## ATLAS EXPERIMENT Conclusion



- \* ATLAS Inner Detector fully operational and the level of performance is above the benchmark.
- \* Alignment in data approaching that of the ideal. Further improvements to come. Effect of systematic weak mode distortions are to be explored.
- Tracking/ID performance studied in fine detail through measurement of charged particle multiplicities. In general good agreement between data and MC.
- Tracker is ready to meet requirements for physics analysis
- See related talks/posters at ICHEP 2010
  - \* Talk "Performance of Track and Vertex Reconstruction and B-Tagging Studies" J. Fleckner.
  - \* Talk "Early Material Studies at the ATLAS Experiment" A. Morley
  - Poster "Alignment of ATLAS Inner Detector Tracking System" J. Wang









## **Backup Slides**



## Inner Detector details





| Item                 |                   | Radial extension (mm)    | Length (mm)      |  |
|----------------------|-------------------|--------------------------|------------------|--|
| Pixel                | Overall envelope  | 45.5 < R < 242           | 0 <  z  < 3092   |  |
| 3 cylindrical layers | Sensitive barrel  | 50.5 < R < 122.5         | 0 <  z  < 400.5  |  |
| $2 \times 3$ disks   | Sensitive end-cap | 88.8 < R < 149.6         | 495 <  z  < 650  |  |
| SCT                  | Overall envelope  | 255 < R < 549 (barrel)   | 0 <  z  < 805    |  |
|                      |                   | 251 < R < 610 (end-cap)  | 810 <  z  < 2797 |  |
| 4 cylindrical layers | Sensitive barrel  | 299 < R < 514            | 0 <  z  < 749    |  |
| $2 \times 9$ disks   | Sensitive end-cap | 275 < R < 560            | 839 <  z  < 2735 |  |
| TRT                  | Overall envelope  | 554 < R < 1082 (barrel)  | 0 <  z  < 780    |  |
|                      | •                 | 617 < R < 1106 (end-cap) | 827 <  z  < 2744 |  |
| 73 straw planes      | Sensitive barrel  | 563 < R < 1066           | 0 <  z  < 712    |  |
| 160 straw planes     | Sensitive end-cap | 644 < R < 1004           | 848 <  z  < 2710 |  |

| Item           | Intrinsic accuracy<br>(µm)       | Alignment tolerances<br>(µm) |           |                             |
|----------------|----------------------------------|------------------------------|-----------|-----------------------------|
|                |                                  | Radial (R)                   | Axial (z) | Azimuth $(\mathbf{R}-\phi)$ |
| Pixel          |                                  |                              |           |                             |
| Layer-0        | 10 (R-\$\$) 115 (z)              | 10                           | 20        | 7                           |
| Layer-1 and -2 | 10 (R-\$\$) 115 (z)              | 20                           | 20        | 7                           |
| Disks          | 10 (R-\$\$) 115 (R)              | 20                           | 100       | 7                           |
| SCT            |                                  |                              |           |                             |
| Barrel         | 17 (R-\$\$) 580 (z) <sup>1</sup> | 100                          | 50        | 12                          |
| Disks          | 17 (R-\$\$) 580 (R)1             | 50                           | 200       | 12                          |
| TRT            | 130                              | 0.00000                      | 100000    | 30 <sup>2</sup>             |

Arises from the 40 mrad stereo angle between back-to-back sensors on the SCT modules with axial (barrel)
or radial (end-cap) alignment of one side of the structure. The result is pitch-dependent for end-cap SCT modules.

2. The quoted alignment accuracy is related to the TRT drift-time accuracy.





- \* Cosmic Ray data recorded in 2008 and 2009
- ★ Collisions recorded at √s=900 GeV (2009), √s=2.36 TeV (2009) √s=7 TeV (2010)
- Monte Carlo (MC) simulation of non-diffractive protonproton collisions. PYTHIA is used to generate 2→2 parton scattering
- \* Generated events passed through a detailed GEANT4 toolkit based simulation of the ATLAS detector





# SCT endcap hit efficiency





