Hard diffractive scattering from soft color screening effects

Roman Pasechnik

Uppsala U.

In collaboration with

Prof. Rikard Enberg and

Prof. Gunnar Ingelman

Diffractive Deep Inelastic Scattering: motivation

✓ The success of Soft Color Interaction (SCI) model (Edin, Ingelman, Rathsman'97)

- Soft interactions among the final state partons and proton remnants
 (=> proton color field) at small momentum transfers < 1 GeV
- Hard pQCD part (small distances) is not affected by soft interactions (large distances)
- Single parameter probability for soft colour-anticolour (gluon) exchange
- Single model describing all final states: both diffractive and nondiffractive

Soft Colour Interaction model (SCI)

Add-on to Lund Monte Carlo's LEPTO (ep) and PYTHIA $(p\bar{p})$

 $\mathsf{ME} + \mathsf{DGLAP} \; \mathsf{PS} > Q_0^2 \quad o \quad \mathsf{SCI} \; \mathsf{model} \qquad o \quad \mathsf{String} \; \mathsf{hadronisation} \; \sim \Lambda$ colour ordered parton state rearranged colour order modified final state

Size Δy_{max} of largest gap in DIS events

 $SCI \Rightarrow plateau in \Delta y_{max}$ characteristic for diffraction

Small parameter sensitivity -P = 0.5 $\cdots P = 0.1$

> Gap-size is infrared sensitive observable!

Large gaps at parton level normally string across \rightarrow hadrons fill up $SCI \rightarrow new string topologies, some with gaps$

QCD rescattering theory

Diffractive DIS at HERA

Q^2 Q^2

Soft gluons cannot resolve quarks dynamically → but they always couple to quark current!

QCD rescattering model

Hard part conventional (small distance)

Soft part: color-screening (octet) multigluon exchange (large distance)

Diffractive DIS at HERA: Final State Interactions in the dipole picture

Basic variables:

$$x \equiv \frac{Q^2}{2Pq} = \frac{Q^2}{Q^2 + W^2}, \quad \beta = \frac{Q^2}{Q^2 + M_X^2}, \quad x_P = \frac{x}{\beta}, \quad t = (P' - P)^2$$

Invariant mass of X system and c.m.s energy

$$M_X^2 = \frac{1-\beta}{\beta} Q^2, \quad W^2 \simeq \frac{Q^2}{x_P \beta}, \quad x_P \ll 1, \quad M_X \ll W \quad |t| \ll Q^2, M_X^2 \quad x' \ll x_P$$

$$\varepsilon^2 = z(1-z)Q^2 + m_q^2, \quad k_\perp^2 = z(1-z)M_X^2 - m_q^2$$

The hard QCD factorization scale = quark virtuality!

$$\mu_F^2 = k_\perp^2 + \varepsilon^2 = z(1-z)\frac{Q^2}{\beta}$$

Working domain of interest:

Unintegrated gluon density

$C_F lpha_s/\pi$ $f_a^{ ext{off}}(x_P, x', \Delta_\perp^2, \Delta_\perp^{'2}, \mu_F^2)$

Off-diagonal UGDF

$$\mathcal{F}_g^{\text{off}} \simeq \sqrt{\mathcal{F}_g(x_P, \Delta_\perp^2, \mu_F^2)} \mathcal{F}_g(x', {\Delta'_\perp}^2, {\mu_{\text{soft}}^2}),$$

$$\frac{f_g(x, \Delta_\perp^2)}{\Delta_\perp^2} \equiv \mathcal{F}(x, \Delta_\perp^2) \to \text{const}, \ \Delta_\perp^2 \to 0$$

In the impact parameter space:

$$\mathcal{V}(\mathbf{b}, \mathbf{r}) = \frac{1}{\alpha_s(\mu_{\text{soft}}^2)} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} \sqrt{x_P} \mathcal{F}_g^{\text{off}} \times \left\{ e^{-i\mathbf{r}\Delta_{\perp}} - e^{i\mathbf{r}\Delta_{\perp}} \right\} e^{i\mathbf{b}\Delta_{\perp}}.$$

Analytic coupling at the soft scale

$$\alpha_s^{\rm soft} = \mathcal{A}_1(\Lambda_{\rm QCD}) \simeq 0.7$$

Gaussian Ansatz

$$\sqrt{x_P} \mathcal{F}_g^{\text{off}} \simeq \sqrt{x_P g(x_P, \mu_F^2) \, x' g(x', \mu_{\text{soft}}^2)} \, f_G(\Delta_\perp^2),$$

$$f_G(\Delta_\perp^2) = 1/(2\pi\rho_0^2) \, \exp\left(-\Delta_\perp^2/2\rho_0^2\right),$$

Soft hardronic scale – transverse proton radius

$$r_p \sim 1/\rho_0$$

Diffractive slope

$$\sim \exp(B_D t)$$
 $B_D = 1/\rho_0^2 \simeq 6.9 \pm 0.2 \text{ GeV}^2$ $\rho_0 \simeq 380 \text{ MeV}$

Hard-soft factorization scheme

The total amplitude

<u>loop integration + cutting rules</u>

$$M(\delta) \sim \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} \cdot M^{hard}(\boldsymbol{\Delta}_{\perp}) \cdot M^{soft}(\boldsymbol{\delta} - \boldsymbol{\Delta}_{\perp}) \qquad \delta \equiv \sqrt{-t} = |\boldsymbol{\Delta}_{\perp} + \boldsymbol{\Delta}_{\perp}'|$$

to the impact parameter representation \rightarrow

$$M(\delta) \sim \int d^2b e^{-i\delta \mathbf{b}} \hat{M}^{hard}(\mathbf{b}) \cdot \hat{M}^{soft}(\mathbf{b})$$

factorisation of the b-dependence

<u>Factorization condition</u> in the impact parameter space

Soft gluon "exponentiation"

Soft gluon exchanges generate only the phase shifts – to be resummed to all orders!

the large N_c limit – planar diagrams only!

$$e^{-i\mathbf{r}\mathbf{k}'_{\perp}}M_{1}^{soft} = \mathcal{A}e^{-i\mathbf{r}\mathbf{k}_{\perp}}\frac{1}{\Delta'_{\perp}^{2}}\left[e^{-i\mathbf{r}\Delta'_{\perp}} - 1\right],$$

$$e^{-i\mathbf{r}\mathbf{k}'_{\perp}}M_{2}^{soft} = \frac{\mathcal{A}^{2}}{2!}e^{-i\mathbf{r}\mathbf{k}_{\perp}} \times$$

$$\int \frac{d^{2}\Delta'_{2\perp}}{(2\pi)^{2}}\frac{1}{\Delta'_{1\perp}^{2}\Delta'_{2\perp}^{2}}\left[e^{-i\mathbf{r}\Delta'_{\perp}} - e^{-i\mathbf{r}\Delta'_{2\perp}} - e^{-i\mathbf{r}\Delta'_{1\perp}} + 1\right]$$

Fourier transform ->

$$e^{-i\mathbf{r}\mathbf{k}'_{\perp}}\hat{M}_{1}^{soft} = e^{-i\mathbf{r}\mathbf{k}_{\perp}} \,\mathcal{A} \cdot \mathcal{W}(\mathbf{b}, \mathbf{r}) \,,$$
$$e^{-i\mathbf{r}\mathbf{k}'_{\perp}}\hat{M}_{2}^{soft} = e^{-i\mathbf{r}\mathbf{k}_{\perp}} \,\frac{\mathcal{A}^{2} \cdot \mathcal{W}(\mathbf{b}, \mathbf{r})^{2}}{2!}$$

<u>Soft gluon rescattering amplitude</u> →

$$e^{-i\mathbf{r}\mathbf{k}'_{\perp}}\hat{M}_{2}^{soft} = e^{-i\mathbf{r}\mathbf{k}_{\perp}} \frac{\mathcal{A}^{2} \cdot \mathcal{W}(\mathbf{b}, \mathbf{r})^{2}}{2!}, \quad \dots \underbrace{e^{-i\mathbf{r}\mathbf{k}'_{\perp}}\hat{M}^{soft}(\mathbf{b}, \mathbf{r}) = -e^{-i\mathbf{r}\mathbf{k}_{\perp}} \left(1 - e^{\mathcal{A} \cdot \mathcal{W}(\mathbf{b}, \mathbf{r})}\right)}_{\mathcal{A} = ig_{s}^{2}C_{F}/2} \quad \mathcal{W}(\mathbf{b}, \mathbf{r}) = \frac{1}{2\pi} \ln \frac{|\mathbf{b} - \mathbf{r}|}{|\mathbf{b}|}$$

Inspired by Brodsky et al, PRD65, 114025 (2002)

Gluonic contribution @ large M_X

Gluon radiated from "hard" gluon is far away in p-space from $q\bar{q}$ \rightarrow leading contribution to large M_X

 \rightarrow Altarelli-Parisi splitting \otimes $q\bar{q}$ -dipole \otimes multiple gluon exchange

$$x_P F_{q\bar{q}g}^{D(4)} \simeq \frac{1}{N_c^2} \int \frac{dt_g dz_g}{t_q + m_g^2} P_{gg}(z_g) \frac{\alpha_s(t_g)}{2\pi} x_P F_{q\bar{q}}^{D(4)}$$

Diffractive structure function: results

Data are given in terms of the reduced cross section

$$\sqrt{s} = 318 \text{ GeV}$$

$$x_P \sigma_r^{D(3)} = x_P F_{q\bar{q},T}^{D(3)} + \frac{2 - 2y}{2 - 2y + y^2} x_P F_{q\bar{q},L}^{D(3)} + x_P F_{q\bar{q}g}^{D(3)} \qquad y = Q^2/(sx_B) \le 1$$

$$x_P F_L^{D(4)} = \mathcal{S} Q^4 M_X^2 \int_{z_{min}}^{\frac{1}{2}} dz (1 - 2z) z^2 (1 - z)^2 |J_L|^2$$

Quark dipole contribution:

$$x_P F_T^{D(4)} = 2\mathcal{S} Q^4 \int_{z_{min}}^{\frac{1}{2}} dz (1 - 2z) \left\{ (1 - z)^2 + z^2 \right\} |J_T|^2$$

$$\mathcal{S} = \sum_q e_q^2 / (2\pi^2 N_c^3)$$

Amplitudes:

$$J_{L} = i\alpha_{s}(\mu_{F}^{2}) \int d^{2}\mathbf{r} d^{2}\mathbf{b} e^{-i\boldsymbol{\delta}\mathbf{b}} e^{-i\mathbf{r}\mathbf{k}_{\perp}} K_{0}(\varepsilon r)$$

$$\times \mathcal{V}(\mathbf{b}, \mathbf{r}) \left[1 - e^{\mathcal{A}\mathcal{W}} \right],$$

$$J_{T} = i\alpha_{s}(\mu_{F}^{2}) \int d^{2}\mathbf{r} d^{2}\mathbf{b} e^{-i\boldsymbol{\delta}\mathbf{b}} e^{-i\mathbf{r}\mathbf{k}_{\perp}} \varepsilon K_{1}(\varepsilon r)$$

$$\times \frac{r_{x} \pm ir_{y}}{r} \mathcal{V}(\mathbf{b}, \mathbf{r}) \left[1 - e^{\mathcal{A}\mathcal{W}} \right].$$

Gluonic dipole contribution:

$$x_P F_{q\bar{q}g}^{D(4)} \simeq \frac{1}{N_c^2} \int \frac{dt_g dz_g}{t_g + m_g^2} P_{gg}(z_g) \frac{\alpha_s(t_g)}{2\pi} x_P F_{q\bar{q}}^{D(4)}$$

Diffractive structure function: large Q^2

Gluon density parametrizations at low-x and low Q^2

Large differences at $x < \sim 10^{-2}$ and $Q^2 < \sim 2 \text{ GeV}^2$!!

→ Unknown gluon density in this region !!!

Model parameters

Photon polarization contributions and mass spectrum

Gluonic contribution increases at high Mx and Q²!!!

Summary

✓ We constructed the QCD based model for the soft gluon rescattering.

- ✓ The model works basically well and leads to a good description of the
 HERA data on the diffractive structure function in almost all bins in
 photon virtuality and invariant mass of the final hadronic system.
- ✓ At lower xP and Q^2 the uncertainties in conventional parton densities become significant, and some improvement of the data description is still needed.