Continuum limit results from 2+1 flavor Domain Wall QCD

(RBC and UKQCD Collaborations)

Enno E. Scholz

Institut für Theoretische Physik

Universität Regensburg

23. July 2010 35th International Conference on High Energy Physics ICHEP 2010 — Paris, France

results presented on behalf of **RIKENBrookhavenColumbia and UKQCD** Collaborations

Domain Wall QCD with 2+1 flavors
 (good chiral properties, simulation possible)

- large physics program
 - * light meson decay constants
 - * quark masses
 - * EM splittings

- * neutral kaon mixing
- * semi-leptonic form factors
- * baryon masses
- * . . .
- computational resources RBRC QCDOC, BNL NYBlue, LLNL and ANL resources (USQCD), Edinburgh, . . .

extrapolations in the pion and kaon sector simulation details combined chiral/continuum extrapolation quark masses, decay constants, . . . neutral kaon mixing (B_K) renormalization chiral extrapolation $K \to \pi$ form factor (Kl₃) form factors at small q^2 extrapolation ansätze $K \to \pi \pi$

$N_f = 2 + 1$ Domain Wall Fermion ensembles

• Iwasaki gauge action, 2 lattice spacings

*
$$\beta = 2.13$$
, $1/a = 1.73 \text{ GeV}$
* $L^3 \times T \times L_s = 24^3 \times 64 \times 16$, $aL \approx 2.7 \text{fm}$
* 2 light dynamical masses, $m_\pi = 330$, 420 MeV

*
$$\beta = 2.25, 1/a = 2.28 \text{ GeV}$$

* $L^3 \times T \times L_s = 32^3 \times 64 \times 16, aL \approx 2.7 \text{fm}$
* 3 light dynamical masses, $m_{\pi} = 290, 350, 400 \text{ MeV}$

- dynamical strange quark at physical value (tuning + reweighting)
- partially quenched pion masses: 220 MeV
- in preparation: DislocationSuppressingDetRatio(DSDR)-runs (not included in analysis yet)
 - * coarser lattices (1/ $a \approx 1.4 \text{ GeV}$), larger volumes ($aL \approx 4.5 \text{ fm}$)
 - $*~m_{\pi}=180$, 250 MeV

previous analysis

(Allton et al., Phys. Rev. D78 (2008) 114509)

- 1/a = 1.73 GeV
- half data-set
- no continuum limit
- combined fits meson masses/decay constants
- m_{ud} , m_s , 1/a from m_π , m_K , m_Ω
- (NLO) SU(2) vs. SU(3) χPT
- SU(2) for kaons (f_K, m_K, B_K)

$$\begin{split} f_{\pi} &= 124.1(3.6)_{\rm stat}(6.9)_{\rm syst}\,{\rm MeV} & f_{K} &= 149.6(3.6)_{\rm stat}(6.3)_{\rm syst}\,{\rm MeV} \\ f_{K}/f_{\pi} &= 1.205(18)_{\rm stat}(62)_{\rm syst} \\ m_{ud} &= 3.72(16)_{\rm stat}(33)_{\rm ren}(18)_{\rm syst}{\rm MeV} & m_{s} &= 107.3(4.4)_{\rm stat}(9.7)_{\rm ren}(4.9)_{\rm syst}\,{\rm MeV} \\ m_{ud} &: m_{s} &= 1:28.8(0.4)_{\rm stat}(1.6)_{\rm syst} & (\overline{\rm MS}, 2\,{\rm GeV}) \end{split}$$

R

adding a 2nd lattice spacing

global fits for m_π , m_K , m_Ω , f_π , f_K

- scaling: $1/a_{24c}$, $1/a_{32c}$, quark mass renormalization * match $m_{ll}^{\pi}/m_{hhh}^{\Omega}$, $m_{lh}^{K}/m_{hhh}^{\Omega}$ * m_{π} , m_{K} , m_{Ω} artefact free
- strange quark mass:
 - * know $m_s^{\overline{\text{MS}}}(2 \text{ GeV})$ a posteriori
 - \ast reweighting 90–110 MeV in global fit
- different fit ansätze
 - * NLO SU(2) χ PT
 - * LO polynomial fits
- continuum limit
 - a^2 -dependence of LO-terms, e.g.

$$f_{\pi} = f \left(1 + c_{af} a^2 \right) + \text{NLO}$$

• finite volume correction from χPT

plot courtesy of B. Mawhinney

5

PRELIMINARY

PRELIMINARY

$$f_{\pi} = 122(2)_{\mathsf{stat}}(5)_{\chi}(2)_{\mathsf{FV}}\,\mathsf{MeV}$$

$$m_{ud} = 3.65(20)_{\rm stat}(8)_{\rm ren}(13)_{\rm syst}\,{\rm MeV}$$

$$\begin{split} f_K &= 147(2)_{\rm stat}(4)_{\chi}(1)_{\rm FV}\,{\rm MeV} \\ f_K/f_{\pi} &= 1.208(8)_{\rm stat}(23)_{\chi}(14)_{\rm FV} \\ m_s &= 97.3(1.4)_{\rm stat}(2.1)_{\rm ren}(0.2)_{\rm syst}\,{\rm MeV} \\ (\overline{\rm MS}, 2\,{\rm GeV},{\rm NPR},{\rm RI}-({\rm S}){\rm MOM}) \end{split}$$

(C. Kelly, Lattice 2009, plots courtesy of C. Kelly)

extrapolations in the pion and kaon sector

neutral kaon mixing (B_K)

renormalization

chiral extrapolation

 $K \rightarrow \pi$ form factor (Kl_3)

 $K \to \pi \pi$

Neutral Kaon Mixing ϵ_K and B_K

$$B_{K}(\mu) = \langle \bar{K}^{0} | Q^{\Delta S=2} | K^{0} \rangle / \left(\frac{8}{3} f_{K}^{2} m_{K}^{2} \right)$$
$$|\epsilon_{K}| = C_{\epsilon} \hat{B}_{K} \lambda^{2} \bar{\eta}^{2} |V_{cb}|^{2} \left[|V_{cb}|^{2} (1 - \bar{\rho}) \eta_{tt} S_{0}(x_{t}) + \eta_{ct} S_{0}(x_{c}, x_{t}) - \eta_{cc} S_{0}(x_{c}) \right]$$

PDG '08: $|V_{cb}| = 0.0412(11) \ 2.7\% \rightarrow \delta |V_{cb}|^4 \simeq \delta B_K^{\text{lat}}$ (see Lunghi, Soni (2009) for use of ϵ_K w/o semi-leptonic decays)

precision B_K

Soni, Lunghi (2008/9) Laiho, Lunghi, Van de Water (2009)

- NP in K or B-mixing?
- ullet even without $|V_{ub}|$, $|V_{cb}|$

Buras, Guadagnoli (2008)

- $\epsilon_K = \bar{\epsilon}_K + i\xi$
- reaching precision for (lattice) B_K , include $i\xi$
- same effect as lower B_K
- NP in $K \bar{K}$ and/or $B_d \bar{B}_d$, $B_s \bar{B}_s$

(plots courtesy of Lunghi, Laiho, Van De Water)

9

• ratio of 2- and 3-pt correlators, with 4-quark operator Q_{VV+AA}

$$B_K(t) = \frac{3}{8} \frac{C_{PQP}(t_{\rm src}, t, t_{\rm snk})}{C_{PA}(t_{\rm src}, t)C_{AP}(t, t_{\rm snk})}$$

- Q_{VV+AA} mix with Q_{VV-AA} , Q_{SS+PP} , Q_{SS-PP} , O_{TT} sufficiently suppressed by chiral properties of Domain-Wall fermions
- previous RBC-result $B_K^{\overline{\text{MS}}}(\mu = 2 \text{ GeV}) = 0.524(10)_{\text{stat}}(13)_{\text{ren}}(25)_{\text{syst}}$ (1/a = 1.73 GeV, half data-set, no cont.-extr., RI/MOM-scheme)

Antonio et al. Phys. Rev. Lett. 100 (2008) 032001, Allton et al. Phys. Rev. D78 (2008) 114509

- global fit procedure to data 1/a=1.73 and 2.28 GeV, various m_l
- reweight strange quark mass to physical m_s
- renormalization of $\left< ar{K}^0 \left| Q^{\Delta S=2} \right| K^0 \right>$
 - * global fit
 - * quote result in NDR-scheme ($\overline{\rm MS}$, $\mu=2\,{\rm GeV})$
 - RI/SMOM-scheme(s)

- RI/MOM-scheme: exceptional momenta
- large p^2 : Λ^2/p^2 -suppression, e.g. V-A
- non-execptional momenta $p_1^2 = p_2^2 = (p_1 p_2)^2$ RI/SMOM
- large p^2 : Λ^6/p^6 -suppression
- conversion factor NDR-scheme needed 1-loop PT quark masses, B_K: C. Sturm et al.
- define 4 different SMOM-schemes (projectors)
- volume source technique
- systematic uncertainty
 - * O(4)-breaking: χ^2 -spread
 - st non-zero m_s
 - * residual χSB
 - * truncation error

plot courtesy of C. Kelly

extrapolation to physical m_{ud}

- data at $1/a{=}1.73$, 2.28 GeV, $m_{\pi}=$ 290–420 MeV (dynamical)
- partially quenched data $m_\pi \geq 220~{
 m MeV}$
- physical m_s via reweighting (dynamical m_h tuned within 10–15%)
- SU(2)- χ PT for B_K

$$B_{K}^{xh} = B_{K}^{0} \left[1 + c_{a}a^{2} + c_{0}\frac{\chi_{l}}{f^{2}} + c_{1}\frac{\chi_{x}}{f^{2}} - \frac{\chi_{l}}{32\pi^{2}f^{2}}\log\frac{\chi_{x}}{\Lambda_{\chi}^{2}} \right]$$

* $\chi_{x,l} = 2B\tilde{m}_{x,l}$

- * B , f from global SU(2)- $\chi {\rm PT}$ fit
- * fit parameters depend on m_s (and Λ_χ)
- * inclusion of finite volume effects (log $\rightarrow \ldots$)
- SU(3)- χ PT for B_K

bad convergence, not needed since physical m_h (tuned, reweighting)

• polynomial extrapolation

$$B_K^{xh} = c_0(1 + c_a a^2) + c_l \tilde{m}_l + c_x \tilde{m}_a$$

extrapolation with SU(2) $\chi {\rm PT}$

unitary data in continuum limit SU(2) χ PT with and w/o FV-corr.

plots courtesy of C. Kelly

13

extrapolation with polynomial ansatz

unitary data in continuum limit SU(2) χ PT vs polynomial

plots courtesy of C. Kelly

plot courtesy of C. Kelly

- average central values from SU(2) χ -PT and polyn. extrapolation
- continuum extrapolation
- finite volume systematic error
- renormalization
 - * central value from RI/SMOM-scheme best described by PT
 - * volume source reduces statistical error
 - * other systematics
 - still dominated by truncation in PT

PRELIM.

$$B_{K}^{\overline{\text{MS}}}(\mu = 2 \text{ GeV}) = 0.546(7)_{\text{stat+spread}}(16)_{\chi}(3)_{\text{FV}}(14)_{\text{ren}} \qquad \text{PRELIM.}$$

main uncertainty: NPR and chiral extrapolation

C. Kelly, Lattice 2010

15

previous:
$$B_K^{\overline{\text{MS}}}(\mu = 2 \text{ GeV}) = 0.524(10)_{\text{stat}}(13)_{\text{ren}}(25)_{\text{syst}}$$

- new runs with lighter quark masses (DSDR-action, third 1/a)
- improve NPR: twisted BCs (O(4)-breaking), est. truncation error

extrapolations in the pion and kaon sector neutral kaon mixing (B_K) $K \rightarrow \pi$ form factor (Kl_3) form factors at small q^2

extrapolation ansätze

 $K\to\pi\pi$

TR

- CKM-unitarity relation $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$
- $|V_{us}|$ via $|V_{us}f^+(0)|$ from

$$\Gamma_{K \to \pi l \nu} = C_K^2 \frac{G_F^2 m_K^5}{192\pi^2} I S_{\text{EW}} (1 + 2\Delta_{\text{SU}(2)} + 2\Delta_{\text{EM}}) |V_{us}|^2 |f^+(0)|^2$$

• form factor required

$$\langle \pi(p_{\pi}) | \bar{u} \gamma_{\mu} s | \bar{K}(p_{K}) \rangle = (p_{K} + p_{\pi})_{\mu} f^{+}(q^{2}) + \underbrace{(p_{K} - p_{\pi})_{\mu}}_{=q_{\mu}} f^{-}(q^{2})$$

- . . . alternative methods (see C. Sachrajda, LATTICE 2010 (prelim. FLAG-results))
 - * V_{us}/V_{ud} from f_K/f_{π} Blucher, Marciano (PDG) combined with V_{ud} from nuclear β -decay * $\left|\frac{V_{us}f_K}{V_{ud}f_{\pi}}\right|$, $|V_{us}f^+(0)|$, V_{ud} , unitarity relation solve for remaining three $(|V_{ub}|^2 \approx 0)$ unknowns

- lattice calculation of K_{l3} form factor
 - st need precision better than 1%
 - * SU(3)-flavor-limit ($m_{ud} = m_s$): $f^+(0) = 1$
 - $* f^+(0) 1 = \Delta f + f_2(f_0, m_\pi^2, m_K^2)$
 - * 20% precision on Δf sufficient
 - * ratios of 2- and 3-pt functions
- phenom.: $\Delta f = -0.016(8)$ Leutwyler and Roos (1984)
- RBC-UKQCD, 2+1 flavor DWF: $\Delta f = -0.0129(33)_{\text{stat}}(34)_{\text{extrap}}(14)_a$
 - * q^2 -interpolation $q^2_{\max} = (m_K - m_\pi)^2$, $q^2 < 0$ lattice (periodic bc) $p = 2\pi/L$
 - * pole-ansatz, model-dependence?

$$f_0(q^2) = rac{f_0(0)}{1-q^2/M^2}$$

Boyle et al., PRL 100 (2008) 141601

18

FR

Becirevic et al. (2004)

- calculate $\langle \pi(p_{\pi}) | V_{\mu} | K(p_K) \rangle_{q^2}$ at (any) small q^2
- Boyle et al., arXiv:1004.0886[hep-lat]

twisted boundary conditions (spatial)

$$\psi(x_k + L) = e^{\mathrm{i}\theta_k}\psi(x_k)$$

$$\mathbf{p} = \mathbf{p}_{\mathsf{FT}} + \theta/L$$

- configurations generated with periodic boundary conditions: partially twisted boundary conditions (small, negligible finite volume effect, Flynn et al. (2006))
- $q^2 = 0$ (with zero FT-momentum)

*
$$\theta_{\pi} = \mathbf{0} |\theta_{K}| = L \sqrt{\left(\frac{m_{K}^{2} + m_{\pi}^{2}}{2m_{\pi}}\right)^{2} - m_{K}^{2}}$$

* $\theta_{K} = \mathbf{0} |\theta_{\pi}| = L \sqrt{\left(\frac{m_{K}^{2} + m_{\pi}^{2}}{2m_{K}}\right)^{2} - m_{\pi}^{2}}$

* plus additional values $(q^2
eq 0)$

• completely removes uncertainty due to q^2 -extrapolation

• extrapolation

- $\ast\,$ pole/polynomial-ansatz for q^2
- * **SU(3)** or SU(2) ChPT
- uncertainty in ChPT:

$$f^{+}(0) = 1 + \Delta f + f_2(f_0, m_{\pi}^2, m_K^2)$$

* value of f_0 ?
* $f_0 \rightarrow f, f_{\pi}, \ldots$: reordering (NNLO)

- * $f_0 = 100$, **115**, 131 MeV
- fixed lattice spacing: 4% error

$$f^{+}(0) = 0.9599(34)_{\text{stat}} \binom{+31}{-43}_{\text{ChPT}} (14)_{a} = 0.960 \binom{+5}{-6}_{\text{revious:}} f^{+}(0) = 0.9644(33)_{\text{stat}} (34)_{\text{ChPT},q^{2}} (14)_{a}$$

extrapolations in the pion and kaon sector

neutral kaon mixing (B_K)

$K \to \pi$ form factor (Kl_3)

 $K\to\pi\pi$

TR

$K o \pi \pi$, $\Delta I = 1/2$, \ldots

- previous attempts: relate $K \to \pi \pi$ 4-quark operators to $K \to \pi$, $K \to$ vac
 - * quenched approximation
 - * SU(3)-ChPT required
 - * large NLO-corrections
 - * LECs unreliable calculated (> 100% uncertainty)

Christ, Li, LATTICE 2008

• current approach

- * directly calculate $\langle \pi \pi | \mathcal{O} | K \rangle$
- * use twisted boundary conditions to impose momentum on $\pi\pi$ states
- * Lellouch-Lüscher approach: Eucl., finite vol. \rightarrow physical, infinite vol. matrix-element
- * first **preliminary** results presented at Lattice 2010:
 - $\operatorname{Re}(A_2) = 1.56(07)_{\operatorname{stat}}(25)_{\operatorname{syst}} \cdot 10^{-8} \operatorname{GeV} (\operatorname{Lightman})$ phys. kinematics: $m_{\pi} = 145.6(5) \operatorname{MeV}$, $m_K = 519(2) \operatorname{MeV}$, $E_{\pi\pi} = 516(9) \operatorname{MeV}$
 - $\operatorname{Re}(A_0) = 43(12) \cdot 10^{-8} \operatorname{GeV}$ (Liu)

unphys. kinematics: $m_{\pi} = 420$ MeV, $m_{K} = 778$ MeV, threshold $\pi\pi$ state

Continuum limit results from 2+1 Domain Wall QCD RBC-UKQCD Collaboration

extrapolations in the pion and kaon sector

continuum extrapolation from 2 lattice spacings extrapolations from $m_{\pi} = 290-420$ GeV to physical point results for decay constants, quark masses, LECs

neutral kaon mixing

PRELIM.

 $B_K^{\overline{\text{MS}}}(\mu = 2 \text{ GeV}) = 0.546(7)_{\text{stat+spread}}(16)_{\chi}(3)_{\text{FV}}(14)_{\text{ren}}$

PRELIM.

 $egin{aligned} K &
ightarrow \pi \mbox{ form factor } (Kl_3) \ f^{K\pi}_+(0) &= 0.9599(34)_{
m stat}(^{+31}_{-43})_{
m chPT}(14)_a \ K &
ightarrow \pi\pi \end{aligned}$

direct computation in progress. . .

BACKUP

(Why) Domain Wall fermions

- different lattice fermions
 - * Wilson fermions and improved versions
 - * staggered fermions
 - * domain wall fermions (DWF)
 - * overlap-fermions
- DWF
 - st fermion fields have a 5th dimension of extent L_s
 - * left and right handed fermions on slice 0 and $L_s 1$
 - * propagation through 5th dimension: residual chiral symmetry breaking (m_{res})
 - chiral symmetry breaking under control
 - reduces (wrong chirality) operator mixing (B_K)
 - non-perturbative renormalization (quark masses, B_K)

Reweighting

- determined in (global) fit
- stochastically reweight

$$\det\left(\frac{D(m_l, m'_h)^{\dagger} D(m_l, m'_h)}{D(m_l, m_h)^{\dagger} D(m_l, m_h)}\right)^{\frac{1}{2}}$$

• include reweighting in global fit

TR

residual chiral symmetry breaking

- **Domain Wall Fermions:** good chiral properties (suppress wrong op. mixing, NPR)
- left and right handed fermions separated in 5th dim.
- residual mass term $m_{
 m res}$

$$R(t) = \frac{\langle \sum_{x} J_{5q}^{a}(x,t) P^{a}(0,0) \rangle}{\langle \sum_{x} P^{a}(x,t) P^{a}(0,0) \rangle} \stackrel{t \gg 1}{\rightarrow} m_{\text{res}}(m_{x})$$

mid-point operator

$$J_{5q}^{a} = \bar{\Psi}_{Ls/2} P_{R} \tau^{a} \Psi_{Ls/2-1} - \bar{\Psi}_{Ls/2-1} P_{L} \tau^{a} \Psi_{Ls/2}$$
$$m_{\text{res}} = 0.00315(02)$$

Partial Quenching

- dynamically simulated quark masses: $m_{\sf sea}$
- "measurements" done at different quark masses m_{valence}

different from quenched simulations: no dynamical fermions

- unitary case for $m_{\text{valence}} = m_{\text{sea}}$
- Partially Quenched χ PT (Rupak/Shoresh, Sharpe/Shoresh, . . . , Sharpe/van de Water, . . .)

SU(2) PQ χ PT

$$m_{xy}^{2} = \frac{\chi_{x} + \chi_{y}}{2} \left\{ 1 + \frac{32}{f^{2}} (2L_{6}^{(2)} - L_{4}^{(2)}) \chi_{l} + \frac{8}{f^{2}} (2L_{8}^{(2)} - L_{5}^{(2)}) (\chi_{x} + \chi_{y}) \right.$$
$$\left. + \left[\ldots \times \log(\chi_{x}), \log(\chi_{y}) \right] \right\}$$
$$f_{xy} = f \left\{ 1 + \frac{16}{f^{2}} L_{4}^{(2)} \chi_{l} + \frac{4}{f^{2}} L_{5}^{(2)} (\chi_{x} + \chi_{y}) \right.$$
$$\left. + \left[\ldots \times \log(\chi_{x} + \chi_{l}), \log(\chi_{y} + \chi_{l}), \log(\chi_{x}), \log(\chi_{y}) \right] \right\}$$
$$\chi_{X} = 2B \left(m_{X} + m_{\text{res}} \right)$$

f, B, $L_i^{(2)}$ depend on (background) m_h

TR

$$\mathcal{L}_{\pi\pi} = \frac{f^2}{8} \operatorname{Tr} \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} + \frac{f^2 B}{4} \operatorname{Tr} \left(M^{\dagger} \Sigma + M \Sigma^{\dagger} \right)$$
$$\mathcal{L}_{\pi K} = D_{\mu} K^{\dagger} D^{\mu} K - M_{K}^{2} K^{\dagger} K$$
$$K = \left(\begin{array}{c} K^{+} \\ K^{0} \end{array} \right), \qquad \Sigma = \xi^{2} = \exp \frac{i}{f} \left(\begin{array}{c} \pi^{0} / \sqrt{2} & \pi^{+} \\ \pi^{-} & -\pi^{0} / \sqrt{2} \end{array} \right)$$
$$\Sigma \to L \Sigma R^{\dagger}, \qquad \xi \to L \xi U^{\dagger} = U \xi R^{\dagger},$$
$$K \to U K, \qquad D_{\mu} K \to U D_{\mu} K$$
$$D_{\mu} K = \partial_{\mu} K + V_{\mu} K, \qquad V_{\mu} = \frac{1}{2} \left(\xi^{\dagger} \partial_{\mu} \xi + \xi \partial_{\mu} \xi^{\dagger} \right)$$

$$m_{xh}^{2} = B^{(K)}(m_{h})\widetilde{m}_{h} \left\{ 1 + \frac{\lambda_{1}(m_{h})}{f^{2}}\chi_{l} + \frac{\lambda_{2}(m_{h})}{f^{2}}\chi_{x} \right\}$$

$$f_{xh} = f^{(K)}(m_{h}) \left\{ 1 + \frac{\lambda_{3}(m_{h})}{f^{2}}\chi_{l} + \frac{\lambda_{4}(m_{h})}{f^{2}}\chi_{x} - \frac{1}{(4\pi f)^{2}} \left[\frac{\chi_{x} + \chi_{l}}{2} \log \frac{\chi_{x} + \chi_{l}}{2\Lambda_{\chi}^{2}} + \frac{\chi_{l} - 2\chi_{x}}{4} \log \frac{\chi_{x}}{\Lambda_{\chi}^{2}} \right] \right\}$$

ICHEP PARIS 2010

- NLO-fits not working up to the strange quark mass $(m_x = 0.001, m_y = 0.04 \Rightarrow m_{xy} \approx 554 \text{ MeV})$
- including NNLO-terms
 - * additional LECs (from: \mathcal{L}_2 , \mathcal{L}_4 , \mathcal{L}_6)
 - * SU(3): 4+6
 - * PQ-SU(3): 5+10
 - * SU(2): 2+2
 - * PQ-SU(2): 5+8
 - $\ast\,$ complete formulae available $\rm BIJNENS$ et al.,

try to apply with 32^3 data

- * just include analytic NNLO-terms
 (χ_x + χ_y)², (χ_x χ_y)², χ̄², χ̄(χ_x + χ_y), χ̄²
 * still right behaviour in light quark mass region?? non-analytic terms???
 * limited number of data points (sea quark mass)
- chiral symmetry only for up- and down-quarks: $SU(2) \times SU(2)$

(LO+NLO: 2+4) (LO+NLO: 2+4) (LO+NLO: 2+2) (LO+NLO: 2+4)

NNLO-SU(2) fits

using the complete χ PT up to NNLO from Bijnens, Lahde et al.

poor convergence (even worse for masses)

other groups: only constrained fit seem to work at this point

Continuum limit results from 2+1 flavor Domain Wall QCD — E. E. Scholz

R