# MEASUREMENT OF B D(\*)D(\*)K BRANCHING FRACTIONS AT BABAR. "ad 9 Natural Right Record

#### Vincent Poireau

CNRS-IN<sub>2</sub>P<sub>3</sub>, LAPP Annecy, Université de Savoie, France **On behalf of the BaBar collaboration** 





#### OUTLINE

#### MEASUREMENT OF B $\rightarrow$ $\overline{D}^{(*)}D^{(*)}K$ BRANCHING FRACTIONS AT BABAR

This is a <u>new result</u> from BaBar, all results are <u>preliminary</u> (to be submitted soon to Physical Review D)

| Neutral $B$ mode                                                    | Charged $B$ mode                       |
|---------------------------------------------------------------------|----------------------------------------|
| $B^0 \to D^- D^0 K^+$                                               | $B^+ \to \overline{D}{}^0 D^+ K^0$     |
| $B^0 \to D^- D^{*0} K^+$                                            | $B^+ \to \overline{D}{}^0 D^{*+} K^0$  |
| $B^0 \to D^{*-} D^0 K^+$                                            | $B^+ \to \overline{D}^{*0} D^+ K^0$    |
| $B^0 \to D^{*-}D^{*0}K^+$                                           | $B^+ \to \overline{D}^{*0} D^{*+} K^0$ |
| $B^0 \to D^- D^+ K^0$                                               | $B^+ \to \overline{D}{}^0 D^0 K^+$     |
| $B^0 \to D^- D^{*+} K^0 + D^{*-} D^+ K^0$                           | $B^+ \to \overline{D}{}^0 D^{*0} K^+$  |
|                                                                     | $B^+ \to \overline{D}^{*0} D^0 K^+$    |
| $B^0 \to D^{*-}D^{*+}K^0$                                           | $B^+ \to \overline{D}^{*0} D^{*0} K^+$ |
| $B^0 \to \overline{D}{}^0 D^0 K^0$                                  | $B^+ \to D^- D^+ K^+$                  |
| $B^0 \to \overline{D}{}^0 D^{*0} K^0 + \overline{D}{}^{*0} D^0 K^0$ | $B^+ \to D^- D^{*+} K^+$               |
|                                                                     | $B^+ \to D^{*-}D^+K^+$                 |
| $B^0 \to \overline{D}^{*0} D^{*0} K^0$                              | $B^+ \to D^{*-}D^{*+}K^+$              |

#### Plan of the talk

- Motivation
- Event selection
- Data fits
- Branching fractions
- Systematics
- Results

#### MOTIVATION

- For a long time, there was a theoretical inconsistency between the B decays into charm particles (charm counting) and the B semileptonic branching fraction
- In 1994, it was realized that an enhancement was needed in b→ccs to avoid the inconsistency
  - Buchalla *et al.* predicted sizeable branching fractions for  $B \to \bar{D}^{(*)}D^{(*)}K(X)$
- In 2003, with 76 fb<sup>-1</sup>, BaBar reported the observation (or limits) on the 22 B  $\rightarrow \bar{D}^{(*)}D^{(*)}K$  final states PRD 68, 092001 (2003)
  - BF(B<sup>0</sup>  $\rightarrow \overline{D}^{(*)}D^{(*)}K$ ) = (4.3 ± 0.3 ± 0.6)%
  - BF(B<sup>+</sup>  $\rightarrow \overline{D}^{(*)}D^{(*)}K$ ) = (3.5 ± 0.3 ± 0.5)%
- In 2006, BaBar studied inclusive B decays to charm particles

PRD 74, 091101 (2006)

- Charm counting now in agreement with semileptonic branching fraction
- b→ccs transition containing a D̄ meson (wrong-sign D̄ production)
  - BF( $\bar{B}^0 \to \bar{D}X$ ) = (10.4 ± 1.9)%
  - BF(B<sup>-</sup>  $\rightarrow \overline{D}X$ ) = (11.1 ± 0.9)%

#### MOTIVATION

- In addition,  $B \to \bar{D}^{(*)}D^{(*)}K$  events are interesting for varieties of studies
  - Test of isospin relations M. Zito, PLB 586, 314 (2004)
  - Time-dependent CP asymmetry to measure cos  $2\beta$  using B  $\rightarrow$  D\*-D\*+K<sup>0</sup><sub>S</sub> BaBar, PRD 74, 091101 (2006) Belle, PRD 76, 072004 (2007)
  - Great potential to study resonances decaying to D

    (\*)D

    (\*)

    Or D

    (\*)K
    - $\psi(3770)$ ,  $D_{s1}(2536)$ ,  $D_{sJ}(2700)$ , X(3872)Belle, PRL 100, 092001 (2008) BaBar, PRD 77, 011102 (2008) Belle, PRD 81, 031103 (2010)
- Diagrams









- This talk: measurement of the 22 B  $\rightarrow \bar{D}^{(*)}D^{(*)}K$  branching fractions
  - Using a technique valid whatever are the **contributions of resonant states**

#### **EVENT SELECTION**

- Using full BaBar data sample: 429 fb<sup>-1</sup>,  $N_{B\bar{B}} = (470.9 \pm 0.1 \pm 2.8) \times 10^6$
- Exclusive reconstruction:
  - $D^0 \to K^- \pi^+, D^0 \to K^- \pi^+ \pi^0, D^0 \to K^- \pi^+ \pi^- \pi^+$
  - $D^+ \to K^- \pi^+ \pi^+$
  - $D^{*+} \rightarrow D^0 \pi^+$ ,  $D^+ \pi^0$  (reconstructing  $D^+ \pi^0$  only for modes with  $D^{*-}D^{*+}$ )
  - $D^{*0} \to D^0 \pi^0$ ,  $D^0 \gamma$
  - $K^0_s \to \pi^+ \pi^-$
- For modes having a  $D^0$  and a  $\bar{D}^0$  in the final state
  - At least one of them required to decay to  $K^-\pi^+$  for most of the modes
- Every final state (112 in total) have different level of background
  - Each final states **optimized** separately, maximizing the significance  $S/(S+B)^{1/2}$  on simulation
- Selection of D<sup>(\*)</sup> and K mesons based on
  - Mass, energy of decay products, vertexing, particle identification, ...

### **EVENT SELECTION**

- Selection of B meson based on
  - **Topological** variables to suppress continuum events
  - $\mathbf{m}_{\mathbf{ES}}$  and  $\Delta \mathbf{E}$  variables
    - $m_{ES} = \sqrt{s/4 p_B^{*2}}$ , peaking at the B mass
    - $\Delta E$  = difference between the B energy and the beam energy, peaking at zero
      - Cutting on this variable after the choice of the best candidate
- When several B candidates: choosing the one with the smallest  $|\Delta E|$
- m<sub>ES</sub> distributions after the complete selection



• Fit of m<sub>ES</sub> distributions to extract the signal yields and the branching fractions

#### **DATA FITS**

- Determine first the shape of the 4 contributions
  - Each shape taken and fixed from the **simulation**, except combinatorial background
- Signal
  - Crystal Ball PDF (Gaussian + tail on the low side)
- Cross-feed
  - Events from all the  $\bar{D}^{(*)}D^{(*)}K$  modes, except the one we reconstruct, that pass the complete selection, reconstructed in the given mode
  - Non negligible part peaking in m<sub>ES</sub>
- Combinatorial background
  - Described by an Argus PDF
- Peaking background
  - Events **peaking** in m<sub>ES</sub> not due to the cross-feed
  - Described by a Gaussian PDF

#### **DATA FITS**

- Total fits with 4 free parameters
  - **Signal**: yield and mean
  - Combinatorial background: yield and Argus shape
- Iterative procedure performed because of the large proportion of cross-feed events
  - Each channel **depends** on the branching fractions of others
  - 4 iterations needed to converge





#### **BRANCHING FRACTIONS**

- B → D̄(\*)D(\*)K events contain many resonances, some of them possibly unknown
  - Global efficiencies quite different between non resonant and resonant states
- We measure the branching fractions without any assumptions on the resonance contributions
  - Use the efficiency at the event position of the Dalitz plane and reweight the signal by this efficiency
  - Use **sPlot** to **isolate** signal contribution event-per-event
- - where w<sub>s</sub> are the **sWeights** for the signal PDF
  - $\epsilon_{ij}$  is the **efficiency** for the subdecays j at the Dalitz position of event i

#### **SYSTEMATICS**

• List of systematic uncertainties taken into account

Bigger

- Peaking background (~10% or bigger)
- **Particle** detection (~6-7%)
- Uncertainties on secondary branching fractions and  $N_{B\bar{B}}$  (~5%)
- Binning effect of efficiency mapping
- Limited **MC** statistics
- Signal shape
- Cross-feed
- Combinatorial background
- **Iterative** procedure

Smaller

- Fit procedure
- All steps of analysis validated on MC simulation

## **RESULTS**

Observation of some color-suppressed modes

| Preliminary                                                               | Signal yield                | Peak. back. yield   | Cross-feed yield | Branching fraction      |              |  |  |  |
|---------------------------------------------------------------------------|-----------------------------|---------------------|------------------|-------------------------|--------------|--|--|--|
| Mode                                                                      | $N_S$                       | $N_{PB}$            | $N_{CF}^{SR}$    | $\mathcal{B}$           | Significance |  |  |  |
| $B^0$ decays through external W-emission amplitudes                       |                             |                     |                  |                         |              |  |  |  |
| $B^0 \to D^- D^0 K^+$                                                     | $622 \pm 49$                | $154\pm53$          | 72               | $10.5\pm0.8\pm1.0$      | $7.7\sigma$  |  |  |  |
| $B^0 \to D^- D^{*0} K^+$                                                  | $1120 \pm 66$               | $259 \pm 79$        | 141              | $33.7 \pm 1.7 \pm 3.8$  | $7.1\sigma$  |  |  |  |
| $B^0 \to D^{*-}D^0K^+$                                                    | $1221 \pm 54$               | $101 \pm 42$        | 77               | $22.5 \pm 1.0 \pm 1.7$  | $12.3\sigma$ |  |  |  |
| $B^0 \to D^{*-}D^{*0}K^+$                                                 | $1838 \pm 63$               | $35 \pm 29$         | 106              | $100.8 \pm 3.2 \pm 8.2$ | $11.4\sigma$ |  |  |  |
| $B^0$                                                                     | decays through ex           | kternal+internal V  | V-emission amp   | litudes                 | ž            |  |  |  |
| $B^0 \to D^- D^+ K^0$                                                     | $65 \pm 10$                 | $6 \pm 11$          | $^2$             | $8.1 \pm 1.2 \pm 1.2$   | $5.5\sigma$  |  |  |  |
| $B^0 \to D^- D^{*+} K^0 + D^{*-} D^+ K^0$                                 | $406 \pm 25$                | $0 \pm 10$          | 8                | $59.8 \pm 3.5 \pm 3.7$  | $12.9\sigma$ |  |  |  |
| $B^0 \to D^{*-}D^{*+}K^0$                                                 | $492 \pm 27$                | $20 \pm 14$         | 5                | $77.7\pm4.2\pm6.5$      | $12.0\sigma$ |  |  |  |
|                                                                           | $B^0$ decays throu          | gh internal $W$ -em | ission amplitud  | es                      |              |  |  |  |
| $B^0 \to \overline{D}{}^0 D^0 K^0$                                        | $42 \pm 19$                 | $25 \pm 28$         | 19               | $2.3 \pm 1.0 \pm 0.8$   | $1.8\sigma$  |  |  |  |
| $B^{0} \to \overline{D}^{0} D^{*0} K^{0} + \overline{D}^{*0} D^{0} K^{0}$ | $82 \pm 39$                 | $78 \pm 44$         | 147              | $6.9 \pm 3.1 \pm 3.7$   | $1.4\sigma$  |  |  |  |
| $B^0 \to \overline{D}^{*0} D^{*0} K^0$                                    | $161 \pm 49$                | $47 \pm 30$         | 217              | $22.1 \pm 5.3 \pm 6.2$  | $2.2\sigma$  |  |  |  |
|                                                                           | B <sup>+</sup> decays throu | gh external $W$ -en | nission amplitud | les                     |              |  |  |  |
| $B^+ 	o \overline{D}{}^0 D^+ K^0$                                         | $240 \pm 32$                | $43 \pm 24$         | 18               | $15.1 \pm 1.8 \pm 1.4$  | $6.2\sigma$  |  |  |  |
| $B^+ \to \overline{D}{}^0 D^{*+} K^0$                                     | $229 \pm 19$                | $10 \pm 11$         | 16               | $37.2 \pm 3.0 \pm 2.2$  | $10.8\sigma$ |  |  |  |
| $B^+ \to \overline{D}^{*0} D^+ K^0$                                       | $205 \pm 39$                | $56 \pm 36$         | 93               | $24.3 \pm 3.9 \pm 4.2$  | $3.4\sigma$  |  |  |  |
| $B^+ \to \overline{D}^{*0} D^{*+} K^0$                                    | $285 \pm 27$                | $13 \pm 13$         | 109              | $83.8 \pm 8.0 \pm 8.9$  | $6.9\sigma$  |  |  |  |
| $B^+$                                                                     | decays through e            | xternal+internal V  | W-emission amp   | olitudes                |              |  |  |  |
| $B^+ \to \overline{D}{}^0 D^0 K^+$                                        | $855 \pm 54$                | $243 \pm 85$        | 154              | $11.7 \pm 0.7 \pm 1.3$  | $7.9\sigma$  |  |  |  |
| $B^+ \to \overline{D}{}^0 D^{*0} K^+$                                     | $2072 \pm 73$               | $83 \pm 55$         | 392              | $59.2 \pm 1.9 \pm 4.3$  | $12.3\sigma$ |  |  |  |
| $B^+ 	o \overline{D}^{*0} D^0 K^+$                                        | $687 \pm 59$                | $77 \pm 49$         | 693              | $20.8 \pm 1.6 \pm 1.9$  | $7.4\sigma$  |  |  |  |
| $B^+ \to \overline{D}^{*0} D^{*0} K^+$                                    | $3368\pm140$                | $202\pm66$          | 898              | $105.6\pm3.5\pm12.1$    | $6.6\sigma$  |  |  |  |
| $B^+$ decays through internal W-emission amplitudes                       |                             |                     |                  |                         |              |  |  |  |
| $B^+ \to D^- D^+ K^+$                                                     | $73 \pm 16$                 | $44 \pm 22$         | 8                | $2.6 \pm 0.5 \pm 0.7$   | $2.9\sigma$  |  |  |  |
| $B^+ \to D^- D^{*+} K^+$                                                  | $94 \pm 13$                 | $0 \pm 6$           | 10               | $6.3 \pm 0.9 \pm 0.6$   | $6.9\sigma$  |  |  |  |
| $B^+ \to D^{*-}D^+K^+$                                                    | $74 \pm 13$                 | $22 \pm 14$         | 7                | $6.1 \pm 1.2 \pm 0.9$   | $5.0\sigma$  |  |  |  |
| $B^+ \to D^{*-}D^{*+}K^+$                                                 | $219 \pm 23$                | $27 \pm 15$         | 30               | $12.2 \pm 1.2 \pm 1.1$  | $7.1\sigma$  |  |  |  |

#### ISOSPIN INVARIANCE

- Checking the isospin invariance
  - Amplitudes should be equal interchanging the u and d quarks
  - Ratio of branching fractions r times the ratio of the charged to neutral B lifetime should be equal to 1



#### CONCLUSION

- The branching fractions of the 22 modes  $B \to \overline{D}^{(*)}D^{(*)}K$  have been measured
  - This **supersedes** our previous measurements PRD 68, 092001 (2003)
- In particular, we observed some color-suppressed modes
- Summing the branching fractions
  - BR(B<sup>0</sup>  $\rightarrow \overline{D}^{(*)}D^{(*)}K$ ) = (3.44 ± 0.09 ± 0.23)%
  - BR(B<sup>+</sup>  $\rightarrow \bar{D}^{(*)}D^{(*)}K$ ) = (3.85 ± 0.11 ± 0.27)%
  - This **does not saturate** wrong-sign D production
- Isospin invariance respected within 2σ depending on the mode

# ADDITIONAL SLIDES

## PEP-II AND BABAR



### THE BABAR EXPERIMENT



## **SYSTEMATICS**

| Mode                                                                | Signal         | Cross- | Peaking | Comb. | Fit  | Iter. | MC    | Bins | Particle  | BF +                | Total |
|---------------------------------------------------------------------|----------------|--------|---------|-------|------|-------|-------|------|-----------|---------------------|-------|
|                                                                     | shape          | feed   | back.   | back. | bias | proc. | stat. |      | detection | $N_{B\overline{B}}$ | syst. |
|                                                                     | $(\mathbf{a})$ | (b)    | (c)     | (d)   | (e)  | (f)   | (g)   | (h)  | (i)       | (j)                 |       |
| $B^0 \to D^- D^0 K^+$                                               | 0.2            | 0.1    | 0.7     | 0.1   | 0.0  | 0.0   | 0.4   | 0.2  | 0.5       | 0.3                 | 1.0   |
| $B^0 \to D^- D^{*0} K^+$                                            | 0.7            | 0.1    | 2.5     | 0.0   | 0.0  | 0.0   | 1.2   | 1.3  | 1.9       | 1.1                 | 3.8   |
| $B^0 \to D^{*-}D^0K^+$                                              | 0.5            | 0.0    | 0.5     | 0.0   | 0.0  | 0.0   | 0.4   | 0.5  | 1.1       | 0.8                 | 1.7   |
| $B^0 \to D^{*-}D^{*0}K^+$                                           | 1.9            | 0.2    | 1.6     | 0.1   | 0.0  | 0.2   | 1.9   | 3.5  | 6.1       | 2.7                 | 8.2   |
| $B^0 \to D^- D^+ K^0$                                               | 0.1            | 0.0    | 1.0     | 0.0   | 0.1  | 0.0   | 0.1   | 0.1  | 0.3       | 0.5                 | 1.2   |
| $B^0 \to D^- D^{*+} K^0 + D^{*-} D^+ K^0$                           | 0.9            | 0.0    | 1.2     | 0.1   | 0.0  | 0.0   | 1.2   | 0.8  | 2.2       | 2.0                 | 3.7   |
| $B^0 \to D^{*-}D^{*+}K^0$                                           | 1.1            | 0.0    | 2.2     | 0.0   | 0.1  | 0.0   | 2.8   | 2.3  | 3.9       | 2.7                 | 6.5   |
| $B^0 	o \overline{D}{}^0 D^0 K^0$                                   | 0.3            | 0.0    | 0.7     | 0.1   | 0.1  | 0.0   | 0.1   | 0.1  | 0.1       | 0.1                 | 0.8   |
| $B^0 \to \overline{D}{}^0 D^{*0} K^0 + \overline{D}{}^{*0} D^0 K^0$ | 0.3            | 0.4    | 3.6     | 0.0   | 0.6  | 0.1   | 0.5   | 0.3  | 0.3       | 0.2                 | 3.7   |
| $B^0 \to \overline{D}^{*0} D^{*0} K^0$                              | 1.1            | 1.5    | 4.6     | 0.8   | 0.5  | 2.0   | 1.0   | 2.4  | 1.6       | 0.6                 | 6.2   |
| $B^+ \to \overline{D}{}^0 D^+ K^0$                                  | 0.4            | 0.0    | 0.9     | 0.1   | 0.2  | 0.0   | 0.3   | 0.6  | 0.5       | 0.5                 | 1.4   |
| $B^+ 	o \overline{D}{}^0 D^{*+} K^0$                                | 0.5            | 0.0    | 1.1     | 0.1   | 0.0  | 0.0   | 0.9   | 0.3  | 1.2       | 1.0                 | 2.2   |
| $B^+ \to \overline{D}^{*0} D^+ K^0$                                 | 0.7            | 0.3    | 3.7     | 0.3   | 0.2  | 0.3   | 0.8   | 0.6  | 1.2       | 0.8                 | 4.2   |
| $B^+ \to \overline{D}^{*0}D^{*+}K^0$                                | 1.4            | 1.2    | 3.0     | 0.1   | 0.1  | 0.0   | 2.8   | 5.8  | 4.5       | 2.2                 | 8.9   |
| $B^+ \to \overline{D}{}^0 D^0 K^+$                                  | 0.2            | 0.0    | 1.0     | 0.0   | 0.0  | 0.0   | 0.2   | 0.3  | 0.5       | 0.3                 | 1.3   |
| $B^+ \rightarrow \overline{D}{}^0 D^{*0} K^+$                       | 1.1            | 0.2    | 0.9     | 0.0   | 0.0  | 0.3   | 0.8   | 1.4  | 3.3       | 1.5                 | 4.3   |
| $B^+ \rightarrow \overline{D}^{*0}D^0K^+$                           | 0.4            | 0.2    | 0.8     | 0.3   | 0.1  | 0.2   | 0.5   | 0.7  | 1.2       | 0.6                 | 1.9   |
| $B^+ \to \overline{D}^{*0} D^{*0} K^+$                              | 1.9            | 0.6    | 2.7     | 0.5   | 0.0  | 1.0   | 3.9   | 6.4  | 8.4       | 2.8                 | 12.1  |
| $B^+ \rightarrow D^- D^+ K^+$                                       | 0.1            | 0.0    | 0.6     | 0.0   | 0.0  | 0.0   | 0.0   | 0.0  | 0.1       | 0.1                 | 0.7   |
| $B^+ \to D^- D^{*+} K^+$                                            | 0.1            | 0.0    | 0.2     | 0.0   | 0.0  | 0.0   | 0.2   | 0.3  | 0.3       | 0.2                 | 0.6   |
| $B^+ \to D^{*-}D^+K^+$                                              | 0.1            | 0.0    | 0.7     | 0.0   | 0.0  | 0.0   | 0.3   | 0.2  | 0.3       | 0.2                 | 0.9   |
| $B^+ \to D^{*-}D^{*+}K^+$                                           | 0.2            | 0.0    | 0.5     | 0.0   | 0.0  | 0.0   | 0.5   | 0.2  | 0.7       | 0.4                 | 1.1   |

## ISOSPIN INVARIANCE

| Mode                                                                                                                                                               | r                        | $r \times \tau_{B^+}/\tau_{B^0}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|
| $\mathcal{B}(B^0 \to D^- D^0 K^+) / \mathcal{B}(B^+ \to \overline{D}{}^0 D^+ K^0)$                                                                                 | $0.70 \pm 0.10 \pm 0.09$ | $0.75 \pm 0.14$                  |
| $\mathcal{B}(B^0 \to D^- D^{*0} K^+) / \mathcal{B}(B^+ \to \overline{D}{}^0 D^{*+} K^0)$                                                                           | $0.91\pm0.09\pm0.12$     | $0.97\pm0.16$                    |
| $\mathcal{B}(B^0 \to D^{*-}D^0K^+)/\mathcal{B}(B^+ \to \overline{D}^{*0}D^+K^0)$                                                                                   | $0.93\pm0.16\pm0.18$     | $0.99\pm0.25$                    |
| $\mathcal{B}(B^0 \to D^{*-}D^{*0}K^+)/\mathcal{B}(B^+ \to \overline{D}^{*0}D^{*+}K^0)$                                                                             | $1.20\pm0.12\pm0.16$     | $1.29 \pm 0.22$                  |
| $\mathcal{B}(B^0 \to D^- D^+ K^0) / \mathcal{B}(B^+ \to \overline{D}{}^0 D^0 K^+)$                                                                                 | $0.69\pm0.11\pm0.12$     | $0.74 \pm 0.18$                  |
| $\frac{\mathcal{B}(B^0 \to D^- D^{*+} K^0 + D^{*-} D^+ K^0)}{\mathcal{B}(B^+ \to \overline{D}{}^0 D^{*0} K^+) + \mathcal{B}(B^+ \to \overline{D}{}^{*0} D^0 K^+)}$ | $0.75 \pm 0.05 \pm 0.07$ | $0.80 \pm 0.09$                  |
| $\mathcal{B}(B^0 \to D^{*-}D^{*+}K^0)/\mathcal{B}(B^+ \to \overline{D}^{*0}D^{*0}K^+)$                                                                             | $0.74\pm0.05\pm0.10$     | $0.79 \pm 0.12$                  |
| $\mathcal{B}(B^0 \to \overline{D}{}^0 D^0 K^0) / \mathcal{B}(B^+ \to D^- D^+ K^+)$                                                                                 | $0.90\pm0.43\pm0.38$     | $0.96\pm0.61$                    |
| $\frac{\mathcal{B}(B^0 \to \overline{D}^0 D^{*0} K^0 + \overline{D}^{*0} D^0 K^0)}{\mathcal{B}(B^+ \to D^- D^{*+} K^+) + \mathcal{B}(B^+ \to D^{*-} D^+ K^+)}$     | $0.56 \pm 0.26 \pm 0.31$ | $0.60 \pm 0.43$                  |
| $\mathcal{B}(B^0 \to \overline{D}^{*0}D^{*0}K^0)/\mathcal{B}(B^+ \to D^{*-}D^{*+}K^+)$                                                                             | $1.81\pm0.47\pm0.53$     | $1.94 \pm 0.76$                  |