Reactor neutrinos, double beta and beta decays Experimental review

Fabrice Piquemal

Laboratoire Souterrain de Modane (CNRS/IN2P3 and CEA/IRFU)

and

Centre d'Etudes Nucléaires de Bordeaux-Gradignan (Univ. Bordeaux I and CNRS/IN2P3)

ICHEP 2010 July, 28 2010 Paris

Neutrino properties

- Oscillation parameter sin $2\theta_{13}$
- -Absolute neutrino mass
- Nature of neutrino (Dirac $v \neq \overline{v}$ or Majorana $v = \overline{v}$)
- Neutrino mass scale
- -Right Handed Current
- Majoron

Oscillations parameters and neutrino mass

Mixing angles

Absolute neutrino mass Beta decay : $|m_v| = \sum |U_{ei}| m_i < 2.6 \text{ eV} (90 \% \text{ CL})$ Double beta : $\langle m_{ee} \rangle = |\sum U_{ei}^2 m_i| < 0.3 - 0.7 \text{ eV} (95\% \text{ CL})$ Cosmology : $m_v = m_1 + m_2 + m_3 < 0.5 - 1 \text{ eV} (95\% \text{ CL})$

Reactor neutrinos

<u>J</u>

Reactor neutrino results

Reactor neutrinos

CHOOZ LIMIT sin 2θ₁₃ < 0.16 (90% CL)

Errors on the ratio $N_{observed}/N_{expected}$ Statistical error =2.8%, Systematical error= 2.7%

3 experiments to improve sin $2\theta_{13}$ sensitivity : Double Chooz (France), Daya Bay (China) RENO (South Korea)

See talks Masaki Hishitsuka, Cheng-Ju Lin, Soo-Bong Kim

Near detector to cancel some systematics:

Cross section, flux from reactor, cut efficiency

Higher statistic: More powerful reactors, longer time of running, larger mass of target

 $\sigma_{stat} = 0.2 - 0.5 \%$, $\sigma_{syst} = 0.4 - 0.6\% \longrightarrow \sin 2\theta_{13} < 0.01 - 0.03$

Backgrounds correlated with muons spallations (depth and muons tagging) Uncorreleted background from natural radioactivity (low radioactive materials)

	Location	Thermal Power	Distance Near/far	Depth Near/far
Double Chooz	France	8.5	410/1050	120/300
RENO	South Korea	17.3	290/1380	120/450
DAYA BAY	China	17.4	360/1985 500/1613	260/910

3 yr data sensitivities

	σ _{stat} (%)	σ _{syst} (%)	sin 2θ ₁₃ (90 % CL)
Double Chooz	0.5	0.6	< 0.03
RENO	0.3	0.5	< 0.02
DAYA BAY	0.2	0.4	< 0.01

Reactor neutrinos

	Location	Thermal Power	Distance Near/far	Depth Near/far	Target mass (tons)	running	σ _{stat} (%)	σ _{syst} (%)	sin 2θ ₁₃ (90 % CL)
Double Chooz	France	8.5	410/1050	120/30 0	8.6/8.6	2010 (far) 2012	0.5	0.6	< 0.03
RENO	South Korea	17.3	290/1380	120/45 0	16/16	Dec, 2010	0.3	0.5	< 0.02
DAYA BAY	China	17.4	360/1985 500/1613	260/91 0	20x2/40	DB 2011 Full 2012	0.2	0.4	< 0.01

sin²2_{θ13} discovery (NH, 90% CL)

Beta decay

(A,Z)
$$\rightarrow$$
 (A,Z+1) + e⁻ + $\overline{\nu}_{e}$

$$m_{v_e}^2 = \sum |U_{e_i}|^2 m_i^2$$

Direct measurement by cinematics

 $dN/dE \sim [(E_0 - E_e)^2 - m_{vi}^2]^{1/2}$ 10 averaged const. offset $\sim m^2(v_{\mu})$ 8 neutrino $= \sum_{i} |U_{ei}|^2 m_i^2$ mass 6 N [a.u.] $m_v = 0 eV$ 4 ~2*10⁻¹³ 2 $m_v = 1 \text{ eV}$ Ο -2.5 -2 -1.5 -1 -0.5 0.5 Ο -3 E−E_n [eV]

Fraction of decay in $[Q_{\beta} - m_{\nu}, Q_{\beta}] \sim (m_{\nu}/Q_{\beta})^3$

lowest Q_β value ³H (Q_β= 18.6 keV) High counting rate Low background Energy resolution ~ m_y

TROISK: $m_v^2 = -2.3 \pm 2.5 \pm 2.0 \text{ eV}^2$ $m_v < 2.05 \text{ eV}$ (95% C.L.) But systematics from end-point fluctuations not included

KATRIN experiment

Improvement of ∆E: 0.93 eV (4.8 eV for Mainz) Larger acceptance Statistics 100 days → 1000 days

Tests of main spectrometer 2011 Complete system integration 2012

3 yr of data (5 y real time)

discovery potential $m(v) = 0.35 \text{ eV} (5\sigma)$

sensitivity (90% CL) m(v) < 0.2 eV

MARE experiment

MicroBolometers of ArReO4

¹⁸⁷Re $Q_{\beta} = 2.47 \text{ keV} (T_{1/2}=4.4 \ 10^{10} \text{ yr})$

Full energy measurement No systematic from source But time response of sensor → pile-up

40 35 MIBETA 30 **10 detectors** 25 20 15 10 5 0 1.0 2.0 2.5 1.5 energy [keV]

 $\langle m_{\nu} \rangle^{2} = -141 \pm 211_{stat} \pm 90_{sys} eV^{2}$ $\langle m_{\nu} \rangle < 15 eV (90\% c.l.)$ MARE-I: 300 detectors FWHM ~20 eV τ ~100 – 500 μ s $\langle m_{\nu} \rangle < 2$ –4 eV (5 years)

MARE – II : 5000 detectors (~2018) FWHM ~20 eV τ ~1 – 5 μ s $\langle m_{\nu} \rangle < 0.2 \text{ eV}$ (10 years)

Studies for ¹⁶³Ho Electron capture $Q_{EC} \sim 2.6 \text{ keV}$, $T_{1/2} = 4600 \text{ yr}$

Neutrinoless double beta decay $\beta\beta(0v)$

$$(A,Z) \longrightarrow (A,Z+2) + 2 e^{-\Delta L=2}$$

Non-conservation of leptonic number \rightarrow Majorana neutrinos

Test of new physics : Right Handed Current, Majoron, SUSY,...

Light neutrino exchange

 $< m_{ee} >= m_1 |U_{e1}|^2 + m_2 |U_{e2}|^2 \cdot e^{i\alpha 1} + m_3 |U_{e3}|^2 \cdot e^{i\alpha 2}$

|Uei|: mixing matrix element, α 1 et α 2: Majorana phase

Experimentally

$$T^{_{1/2}}_{_{1/2}}$$
(y) $_{\infty}$ $\stackrel{\underline{\epsilon}}{_{\mathsf{A}}}$ M . t

NO Background

$$T_{1/2}^{0\nu}(y) \propto \frac{\varepsilon}{A} \sqrt{\frac{M \cdot t}{N_{Bckg} \cdot \Delta E}}$$

With Background

$\beta\beta(0\nu)$ observables

150Nd distribution s arxiv: 1005.1241v1 [hep-ex]

$\beta\beta(0\nu)$: isotope choice

Effective neutrino mass and θ_{13}

 $|\langle m_{\nu} \rangle| = |\sum U_{e_i}^2 m_i| = |\cos^2 \theta_{13} (m_1 \cos^2 \theta_{12} + m_2 e^{2i\alpha} \sin^2 \theta_{12}) + m_3 e^{2i\beta} \sin^2 \theta_{13}|$

$\beta\beta(0\nu)$: experiments and projects

Cuoricino

*

Bolometers of TeO₂ (33.8% of ¹³⁰Te) ($Q_{\beta\beta}$ = 2.528 MeV)

Tracko-calo detector

Drift chamber (6000 cells) Plastic scintillator + PMT (2000) 10 kg of isotopes Multi-isotopes $\Delta E/E$ (FWHM) : 8 % @ 3 MeV

Bckg: 0.025 cts/keV/kg/yr

See talk Ch. Marquet

100Mo, 7 kg, 1275 days, 620 000 events

NEMO 3

Tracko-calo detector

Drift chamber (6000 cells) Plastic scintillator + PMT (2000) 10 kg of isotopes Multi-isotopes △E/E (FWHM) : 8 % @ 3 MeV

N events / 0.1 MeV

0

10

1

Bckg: 0.025 cts/keV/kg/yr

NEMO 3

2νββ¹⁰⁰Μο

Radon

int BKG

0vββ¹⁰⁰Se

for T, _(0y)=10²³y

T_{1/2}(0v) > 1.0×10²⁴ yr at 90%CL <m_v> < (0.47 - 0.96) eV

V+A: $T_{1/2}(0v) > 5.4 \times 10^{23}$ yr at 90%CL Majoron: $T_{1/2}(0v) > 2.1 \times 10^{22}$ yr at 90%CL 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 E_{TOT} (MeV) [2.6-3.2] MeV: DATA = 14; MC = 10.9±1.3 $T_{1/2}(0v) > 3.2 \times 10^{23}$ yr at 90%CL $< m_v > < (0.94 - 2.5) eV$

 $\lambda < 1.4 \times 10^{-6}$ g_{ee} < 0.5 × 10⁻⁴ World's best result!

NEMO 3

Tracko-calo detector

Drift chamber (6000 cells) Plastic scintillator + PMT (2000) 10 kg of isotopes Multi-isotopes △E/E (FWHM) : 8 % @ 3 MeV

Bckg: 0.025 cts/keV/kg/yr

Also T_{1/2} (2v) and T_{1/2} (0v) for ⁴⁸Ca, ¹⁵⁰Nd, ¹¹⁶Cd, ⁹⁶Zr, ¹³⁰Te, ⁸²Se and excited states, majoron, etc....

100 kg experiments

Step by step approach

See talks A. Nucciotti, Ch. Marquet

GERDA Ge diode in LAr

+ Energy resolution

Gran Sasso laboratory

2010: 18 kg of ⁷⁶Ge (HM and IGEX crystals)

1st results 2011

2012: 40 kg of 76Ge

CUORE ¹³⁰Te bolometers

+ Energy resolution + Natural Te

Gran Sasso laboratory

CUORE-0 39 kg of ^{nat}Te 13 kg of ¹³⁰Te Data taking 2011

CUORE 200 kg Data taking 2013 (scintillating bolometres ?)

MAJORANA Ge segmented Diode

DUSEL laboratory

2011: 20 kg of ^{nat}Ge

2013 ? : 30 kg of ⁷⁶Ge

+ Energy resolution

SuperNEMO tracko-calo

+ Background rejection + Multi-isotopes **Modane laboratory**

Module-0 7 kg of ⁸²Se (¹⁵⁰Nd) Data taking 2013

20 Module 100 kg Data taking 2015

100 kg experiments

Agressive approach

See talks Carter Hall, Alfredo Thomas, Masayuki Koga

EXO liquid Xenon

WIPPL laboratory

2010: 200 kg of ¹³⁶Xe Results 2013

Ba tagging R&D

SNOLAB laboratory

Nd salt + liquid scintillator

2010: 740 kg of ^{nat}Nd (44 kg of ¹⁵⁰Nd) Dissolved in scintillator

+ Large mass + Possibility to tag daughter nucleus + Large mass + low background detector

SNO++

KamLAND-Zen Xe + liq. scintillator

Kamioka laboratory

2011: 400 kg of ¹³⁶Xe Dissolved in liq. scintillator

NEXT Xe high pressure TPC

Canfranc laboratory

2011: 1 kg of ¹³⁶Xe

2013 : 100 kg

+ Background rejection

+ Large mass + low background detector

Sensitivities 2013 - 2018

	Technique	Location	Mass kg	start	Bckg Cts/keV/kg/yr	T _{1/2} (0∨) 5 yr	<m<sub>ee> meV</m<sub>
EXO	Liquid Xe ¹³⁶ Xe	WIPP (USA)	200	2010	0.002	6.4 10 ²⁵	< 109 - 135
GERDA	Diode Ge ⁷⁶ Ge	Gan sasso (Italy)	18	2010	0.01	3. 10 ²⁵	< 250- 380
			40	2012	0.001	3. 10 ²⁶	< 80 - 120
CUORE-0	Delemetere		13	2011	0.12	8. 10 ²⁵	<100 - 200
CUORE	¹³⁰ Te	Gan sasso (Italy)	200	2013	0.01 0.001	2.1 10 ²⁶ 6.5 10 ²⁶	< 41 -82 < 23- 47
SN module0	Tracko-calo ⁸² Se, ¹⁵⁰ Nd	Modane (France)	7	2013	0.0001	6. 10 ²⁴	< 200 –600
SuperNEMO			100	2015	0.0001	10 ²⁶	< 53 - 145
SNO+	Liq. Scint. ¹⁵⁰ Nd	SNOLAB (Canada)	44	2012			< 100
KamLAND	Liq. Scinti ¹³⁶ Xe	Kamioka (Japan)	400	2011			< 60 (2 yr)

Summary

- Measure of sin $2\theta_{13}$ with reactor neutrinos 2015 sin $2\theta_{13} < 0.01 0.03$
- **Direct m**_v measurement 2017 $m_v < 0.2 \text{ eV}$
- Double beta decay 2013 2018 100 kg experiments <m_{ee} > < 40 -100 meV
- Need to know the results for 1 ton experiment choice (isotope, technique) If discovery, tracking detector needed to determine the process

$\beta\beta(0\nu)$ signal ? HM claim

2002 (3.1σ)

2001

Schedule for data taking

Far detector data taking sept 2010 Civil work for near detector Nov. 2010 Near detector data taking 2012 Tunnel blasting completed Near detector (DB) ready in 2011 Full detector ready in 2012

	Near detector	Far detector
Double Chooz	2012	2010
RENO	2010	2010
DAYA BAY	DB 2011 LA 2012	2012

Detectors

LA (260 m.w.e.) x2 740 v/day

DB (300 m.w.e.) x2 840 v/day

Far (910 m.w.e.) x4 90 v/day

Target: 20 t/detector

290 m (120 m.w.e.) 1280 v/day

1380 m (450 m.w.e) 114 v/day

Target : 16 t

410 m (120 m.w.e.) 400 v/day

1050 m (300 m.w.e) 40 v/day

Target: 8.6 t