July 28th, 2010 @ICHEP2010, Paris

Long Baseline Accelerator Neutrino Experiments

T. Nakaya (Kyoto)

Ferrestrial Experiments

E135°

News (new results) in 2010

- I. Observation of an oscillated tau neutrino candidate event in **OPERA**.
- 2. Start of the Super-v beam experiment, **T2K**.
- 3. Precision measurements of neutrinos and anti-neutrinos oscillations in MINOS.
- 4. Anomalies? LSND anti-neutrino oscillations still remains?

-- Outline --

- I. Introduction
- 2. v_{τ} observation
- 3. T2K starts
- 4. Precision measurements
- 5. Anomaly
- 6. Future Prospects and Summary

1. Introduction

- Precise measurements of v oscillations ($\pm \Delta m_{23}^2$, θ_{23})
 - Test of the standard v oscillation scenario (U_{MNS})
- Discover the last oscillation channel: θ_{13}
- CP violation in the lepton sector (v, v): δ
- Mass hierarchy : the sign of Δm_{23}^2

Future exp.

V_3 Measurements Δm^2_{atm} **Oscillation Probabilities** when $\Delta m_{12}^2 \ll \Delta m_{23}^2 \approx \Delta m_{13}^2 \frac{V_2}{V_1}$ $\triangleright \theta_{23}$: v_{μ} disappearance $P_{\nu_{\mu} \to \nu_{\mu}} \approx 1 - \frac{\cos^4 \theta_{13}}{\sin^2 2\theta_{23}} \sin^2 1.2 \sqrt{\Delta m_{23}^2} L/E_{\nu}$ common $\triangleright \theta_{13}$: v_e appearance $P_{\nu_{\mu} \rightarrow \nu_{e}} \approx \frac{\sin^{2} \theta_{23}}{\sim 0.5} \sin^{2} 2\theta_{13} \sin^{2} \frac{1}{13} \sin^{2} \frac{1}{12} \sin^{2} \frac{1}{12} \sum_{\nu=1}^{2} \frac{1}{12} \sum_{\nu=1}^{1$

$$\delta: CP \text{ violation (in future)}$$

$$A_{CP} = \frac{P(v_{\mu} \rightarrow v_{e}) - P(v_{\mu} \rightarrow v_{e})}{P(v_{\mu} \rightarrow v_{e}) + P(v_{\mu} \rightarrow v_{e})} \cong \begin{bmatrix} \sim 0.18 \text{ (sin}^{2}2\theta_{13}=0.1) \\ \sim 0.58 \text{ (sin}^{2}2\theta_{13}=0.01) \end{bmatrix} \text{ (sin } \delta \end{bmatrix}$$

$$\bullet P(v_{\mu} \rightarrow v_{e}) \text{ at the } I^{\text{st}} \text{ and } 2^{\text{nd}} \text{ osc. peaks could be different by } \delta!$$

2. Tau neutrino observation Phys.Lett.B691:138-145,2010. ICHEP talk by Pasquale Migliozzi

Germany

France

Ev (GeV)

ECC TARGET BRICKS
- Emulsion Cloud Chamber --

• The micron-resolution with one kilo-ton mass scale. – $c\tau_{\tau} = 87 \mu m$

- OPERA analyze 35% of 2008-2009 data, corresponding to 1.89 x 10¹⁹ POT (Protons On Target).
 - $-\sim 0.5$ tau events are expected.
 - Muonless event 9234119599 (22 August 2009, 19:27)
 - NC events or CC-tau hadoronic decay?

Tau Neutrino Candidate event

- The Expected Number of BG
 - 0.018 ± 0.007 for the 1 prong tau selection
 - 0.045 ± 0.020 for all kinds of tau selections
- The expected Signal events
 - -0.54 ± 0.13 (syst.) @ sin²2 θ_{23} =1.0, Δm_{23}^2 =2.5×10⁻³eV²
- The statistical Significance – 2.36 σ with 0.018 ± 0.007 BG events – 2.01 σ with 0.045 ± 0.020 BG events We are looking forward to more data for OPERA Likelihood - TAU+BKG U (HEP2010 - T.Nakaya (Kyoto) --

What happened in November 2009?

- November 20th, 2009.
 - First Beams in LHC
- November 22nd, 2009.
 - First Observation of T2K neutrino events in J-PARC.
- November 23rd, 2009.
 - First Collision in LHC

J-PARC Facility (KEK/JAEA) South to North

Construction JFY2001~2008

J-PARC starts operation toward the world highest intensity proton accelerator.
The high power beam could produce the intense neutrino beam.

3.**T**2K

ICHEP talk by Eric D Zimmerm

(to Kamioka)

Main ring

Neutrino Beams

Bird's eye photo in January of 2008

Off-axis v beam configuration

Quasi Monochromatic Beam

Intense and high-quality neutrino beam

Expected Sensitivity of T2K

ICHEP2010 -- T.Nakaya (Kyoto) --

3.75MW×10⁷ sec. 14

T2K Physics Run begins in 2010.

- Delivered POT: 3.35×10¹⁹ (3.28×10¹⁹ for physics)
- Continuous run @ ~50kW level
- Trial up to 100kW successful.

Near Detector Neutrino Measurements

Super-K(Far detector) neutrino events

- Clean beam timing structure confirmed in FC events
- Twenty-two FC events observed by Mid. May
- Non-beam BG estimated to be <10⁻³evts

Super-K events and T2K Status

Pink diamonds are placed on the wall in the beam direction starting from the reconstructed vertex.

- We are accumulating more and more beam data from now on.
 - Will significantly improve the sensitivity of neutrino oscillations.

FNAL NuMI (Neutrino beam at Main Injector) -- Today's highest power neutrino beam --

Precision Oscillation Parameter Measurements

- $v_{\mu} \rightarrow v_{\mu}$ measurement w/ 7.2 × 10²⁰ POT.
- I986 events observed for 2451 events expected without oscillation.
 - Best fit with neutrino oscillations.
 - Decoherence disfavored: $> 8\sigma$
 - Pure decay disfavored: $> 6\sigma$ (7.8 σ if including NC)

ICHEP2010 -- T.Nakaya (Kyoto) --

NC (Neutral Current) Events

- NC events are as expected.
 - Neutrinos do not disappear. No oscillations to sterile neutrinos.

-
$$v_{\mu}$$
 changes the flavor to v_{τ} or v_{e} .

ICHEP2010 -- T.Nakaya (Kyoto) --

Measurements with Anti-neutrinos

Super-K: Search for CPT violation in atm. v ICHEP talk by Yoshihisa Obayashi

- Under the CPT theorem, $P(v \rightarrow v)$ and $P(\overline{v} \rightarrow \overline{v})$ should be same.
- Test v oscillation or \overline{v} oscillation separately.

Neutrino from SuperK

5. Anomaly -- MiniBooNE results --

6. Future Prospects and Summary

6. Future Prospects and Summary

Supplement

- INGRID & off-axis completed in 2009 (Except side ECAL)
 Side ECAL installation in Summer 2010
- Commissioning completed

INGRID measurements

- Bunch structure clearly seen as expected
- Event rate is stable
- Beam direction well controlled within requirement (<1mrad)

Off-axis detector performances

Hit Efficiencies >99% For all layers (FGD)

System	Channels	Bad chan.	Fraction
DSECAL	3400	H	0.3%
SMRD	4016	3	0.07%
POD	10400	7	0.07%
INGRID	8360	8	0.1%
TPC	124416	12	0.01%
FGD	8448	32	0.4%

Very small number of bad channels

Super-Kamiokande Event Selection

- J-PARC neutrino events selected by event timing using GPS
- SK analysis is very well established
 - >20yrs of experiences w/ Water Cherenkov detector
- Event selection & cut values are fixed already
 UNBIASED SELECTON
- Selection criteria

For v_{μ} disappearance analysis	For v_e appearance search		
Timing coincidence w/ beam timing (+TOF)			
Fully contained (No OD activity)			
Vertex in fiducial volume (Vertex >2m from wall)			
Evis > 30MeV	Evis > 100MeV		
# of ring = I			
μ-like ring	e-like ring		
	No decay electron		
	Inv. mass w/ forced-found 2 nd ring < 105MeV		
	$E_v^{rec} < 1250 MeV$		

FD Data

44