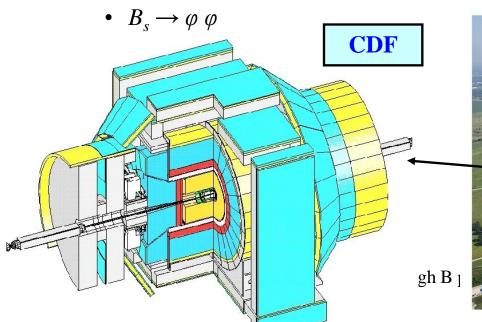
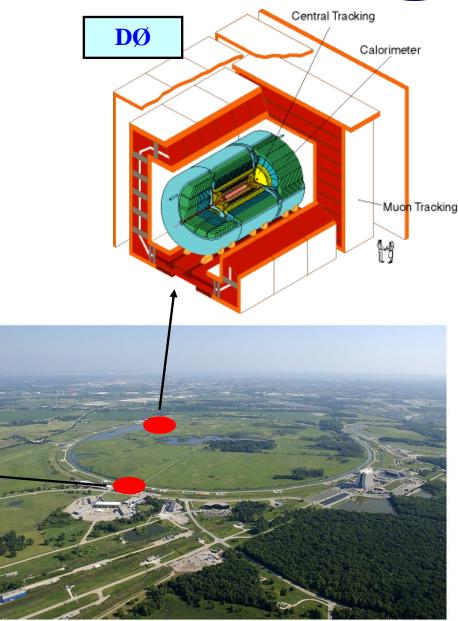


Beyond the Standard Model searches through *B* physics at Tevatron

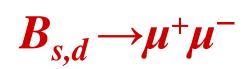
G.Borissov, Lancaster University, UK on behalf of CDF and DØ collaborations

Flavour of New Physics

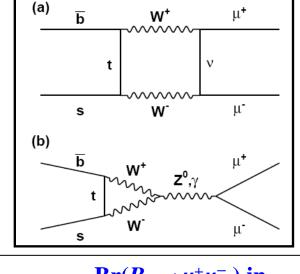

- The first flavour of new phenomena often comes from flavour physics
 - Weak decays of light hadrons existence of charm quark
 - CP violation third quark family
 - $-B^0$ meson oscillation heavy top quark
- B mesons are especially suitable for the beyond SM searches
 - Large mass of b quark stronger coupling to new particles
 - Abundant production
 - Well developed technique of experimental selection
- B_s meson "golden particle" for new physics searches
 - SM value of many B_s observables is suppressed
 - Many theories predict large NP contribution
 - Large CKM parameters amplify possible new effects

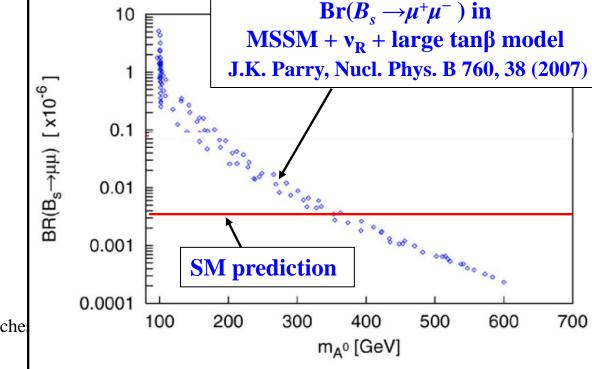


In this talk



- New results from Tevatron are reviewed:
 - Rare decays
 - $B_{s,d} \rightarrow \mu^+ \mu^-$
 - $b \rightarrow s \mu^+ \mu^-$
 - CP Violation
 - Dimuon charge asymmetry $A_{\rm sl}^b$
 - $B_s \rightarrow J/\psi \varphi$



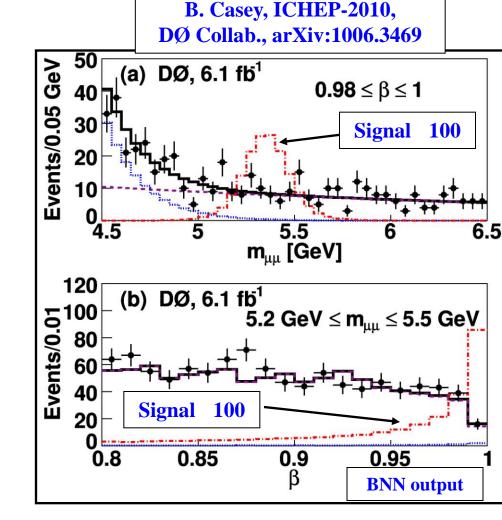


- Very small branching fraction in SM
 - Only loop diagrams contribute

Br
$$(B_s \to \mu^+ \mu^-) = (3.6 \pm 0.3) \times 10^{-9}$$

Br $(B_d \to \mu^+ \mu^-) = (1.1 \pm 0.1) \times 10^{-10}$

- A. Buras, Prog. Theor. Phys. 122, 145(2009)
- New physics can significantly modify this prediction
 - MSSM
 - SO(10)
 - SUSY R-parity violating models
 - _ ...



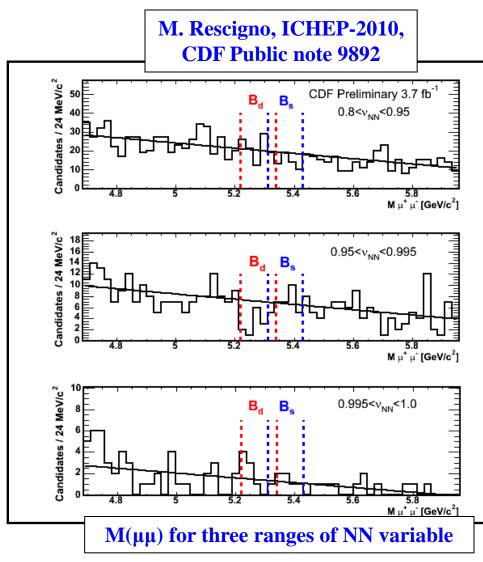
 $B_s \rightarrow \mu^+ \mu^- (\mathbf{D} \mathbf{O})$

- 6.1 fb⁻¹ of data analyzed
- Many improvements of analysis compared to previous published result
 - Improved muon identification and trigger selection
 - Bayesian NN is used instead of Likelihood ratio method
 - Limits are calculated in several bins of BNN variable and M(μμ)

Br
$$(B_s \to \mu^+ \mu^-) < 5.1 \times 10^{-8} (95 \% C.L.)$$

Expected : $4.2 \times 10^{-8} (95 \% C.L.)$

$B_{s,d} \rightarrow \mu^+ \mu^- (CDF)$

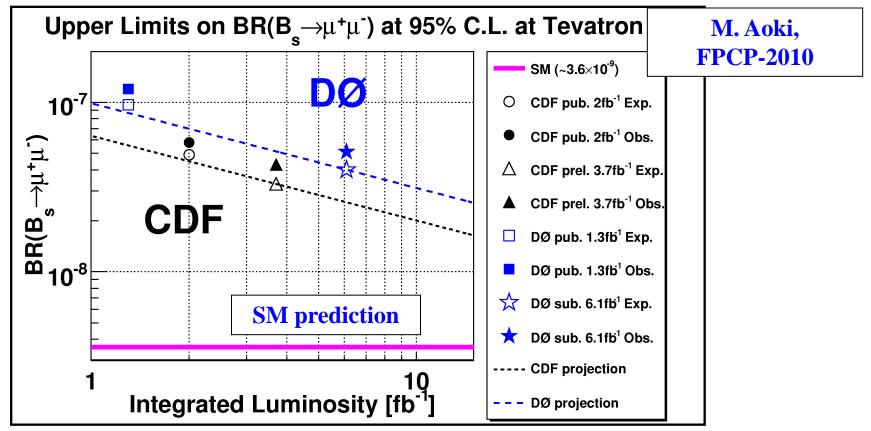


- 3.7 fb⁻¹ of data analyzed
- Several discriminating variables are combined in NN
 - ~ 25% better background rejection than in likelihood ratio method
- Limits are calculated in several bins of NN variable and $M(\mu\mu)$

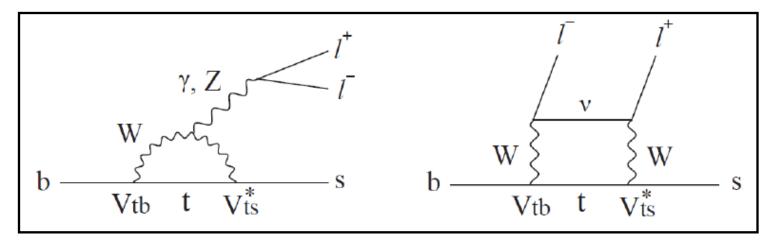
~15% improvement in sensitivity

Br
$$(B_s \to \mu^+ \mu^-) < 4.3 \times 10^{-8} (95 \% C.L.)$$

Expected : $3.3 \times 10^{-8} (95 \% C.L.)$
Br $(B_d \to \mu^+ \mu^-) < 7.6 \times 10^{-9} (95 \% C.L.)$
Expected : $9.1 \times 10^{-9} (95 \% C.L.)$


World's best upper limit on ${\rm Br}(B_s \to \mu^+\mu^-)$ and ${\rm Br}(B_d \to \mu^+\mu^-)$

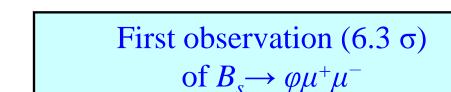
$B_{s,d} \rightarrow \mu^+ \mu^-$: past and future

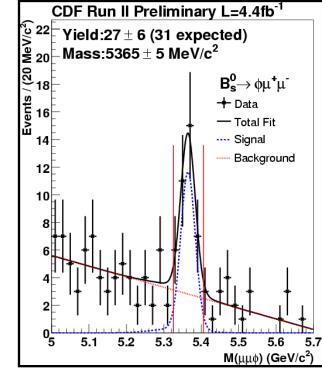


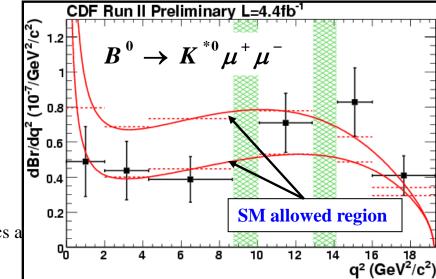
- The expected limit scales better than $1/\sqrt{N}$
- Combination of CDF and DØ results to follow

$b \rightarrow s \mu^+ \mu^-$

- Suppressed in SM can proceed only through loop diagrams
- Sensitive to new physics
- Experimental observables:
 - Branching fractions
 - K^* longitudinal polarization (F_L)
 - Muon forward-backward asymmetry (A_{FB})
- All quantities are measured w.r.t. $q^2 = M(\mu\mu)^2$




$b \rightarrow s \mu^+ \mu^-$


Br
$$(B^+ \to K^+ \mu^+ \mu^-) = (0.38 \pm 0.05 \pm 0.03) \times 10^{-6}$$

Br $(B^0 \to K^{*0} \mu^+ \mu^-) = (1.06 \pm 0.14 \pm 0.09) \times 10^{-6}$
Br $(B_s^0 \to \varphi \mu^+ \mu^-) = (1.44 \pm 0.33 \pm 0.46) \times 10^{-6}$

- 4.4 fb⁻¹ of data analyzed
- Consistent with SM expectation
- Competitive and consistent with B factories

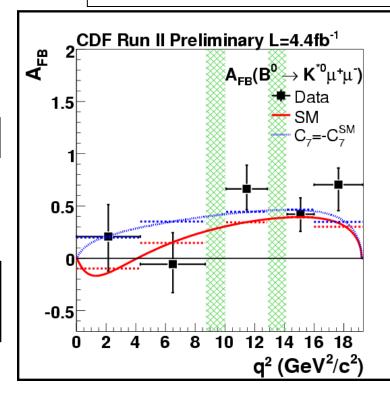
M. Rescigno, ICHEP-2010, CDF Public note 10047

$b \rightarrow s \mu^+ \mu^- : A_{FB}$

M. Rescigno, ICHEP-2010, CDF Public note 10047

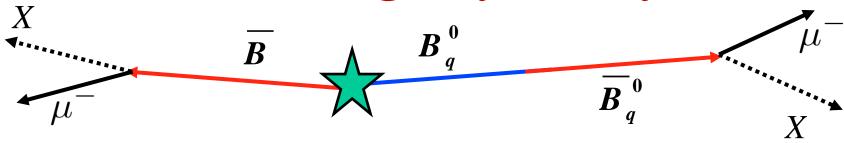
- A_{FB} is sensitive to the NP contribution
- In the theoretically cleanest range:

$$A_{FB} = 0.43^{+0.36}_{-0.37} \pm 0.06$$
 (CDF, $1 < q^2 < 6$ GeV²)


 Consistent and competitive with B factories:

$$A_{FB} = 0.26_{-0.30}^{+0.27} \pm 0.07$$
 (Belle, $1 < q^2 < 6 \text{ GeV}^2$)
 $A_{FB} = 0.24_{-0.23}^{+0.18} \pm 0.05$ (BaBar, $0.1 < q^2 < 6.25 \text{ GeV}^2$)

Consistent with SM expectation


$$A_{FB} = -0.05^{+0.03}_{-0.04} \text{ (SM, } 1 < q^2 < 6 \text{ GeV}^2)$$

- C. Bobeth *et al.* arXiv:1006.5013
- Precision will be improved

Dimuon charge asymmetry

$$A_{sl}^{b} \equiv \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}}$$

 $N_b^{++} (N_b^{--})$ – number of same-sign $\mu^+ \mu^+ (\mu^- \mu^-)$ events from $B \rightarrow \mu X$ decay

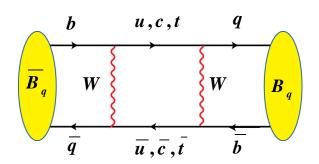
• Both B_d and B_s contribute in A_{sl}^b at Tevatron:

$$A_{sl}^{b} = (0.506 \pm 0.043) a_{sl}^{d} + (0.494 \pm 0.043) a_{sl}^{s}$$

$$B_{d} \text{ contribution}$$

$$B_{s} \text{ contribution}$$

- a_{sl}^q is the charge asymmetry of "wrong sign" semileptonic B_q^0 (q = d,s) decays:


$$a_{sl}^{q} \equiv \frac{\Gamma(\overline{B}_{q}^{0} \to \mu^{+} X) - \Gamma(\overline{B}_{q}^{0} \to \mu^{-} X)}{\Gamma(\overline{B}_{q}^{0} \to \mu^{+} X) + \Gamma(\overline{B}_{q}^{0} \to \mu^{-} X)}; \quad q = d, s$$

Design scarcines unlough to physics at revarion - ICTIET 2010

CP violation in mixing

- Non-zero A_{sl}^b means CP violation in mixing
- Source of this type of CP violation complex phase ϕ_q of B_q (q=d,s) mass matrix

$$\Delta M_{q} = M_{H} - M_{L} \approx 2 \left| M_{q}^{12} \right|$$

$$\Delta \Gamma_{q} = \Gamma_{L} - \Gamma_{H} \approx 2 \left| \Gamma_{q}^{12} \right| \cos \phi_{q}$$

$$\phi_{q} = \arg \left(-\frac{M_{q}^{12}}{\Gamma_{q}^{12}} \right)$$

$$\left\|\mathbf{M}_{q}\right\| = \begin{bmatrix} M_{q} & M_{q}^{12} \\ (M_{q}^{12})^{*} & M_{q} \end{bmatrix} - \frac{i}{2} \begin{bmatrix} \Gamma_{q} & \Gamma_{q}^{12} \\ (\Gamma_{q}^{12})^{*} & \Gamma_{q} \end{bmatrix}$$

• For B_q meson, a_{sl}^q is related to the CP-violating phase ϕ_q :

$$a_{sl}^{q} = \frac{\Delta \Gamma_{q}}{\Delta M_{q}} \tan(\phi_{q})$$

SM prediction

• SM predicts very small values of ϕ_q and $A^b_{\rm sl}$:

$$\phi_d^{SM} = -0.091_{-0.038}^{+0.026}$$

$$\phi_s^{SM} = 0.0042 \pm 0.0014$$

$$A_{sl}^{b,SM} = (-2.3_{-0.6}^{+0.5}) \times 10^{-4}$$

- A. Lenz, U. Nierste, J. High Energy Phys. 0706, 072 (2007)
- These values are below current experimental sensitivity
- New physics contribution can significantly change these values $\sqrt{\frac{NP}{N}}$

$$\phi_d = \phi_d^{SM} + \phi_d^{NP}$$

$$\phi_s = \phi_s^{SM} + \phi_s^{NP}$$

Non-zero A^b_{sl} would indicate the presence of new physics

Measurement strategy

Measure two raw asymmetries (include muons from all sources):
 raw dimuon charge asymmetry
 raw inclusive muon charge asymmetry

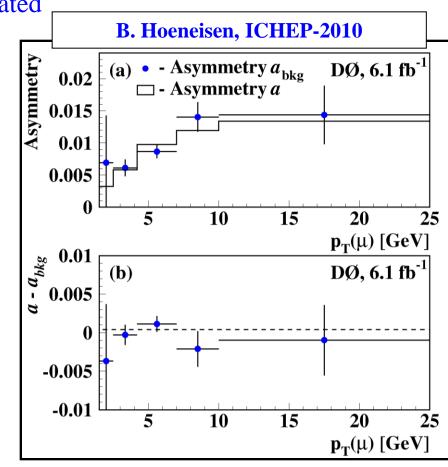
$$A = \frac{N(\mu^{+}\mu^{+}) - N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})}$$
$$= (0.564 \pm 0.053)\%$$

$$a = \frac{n(\mu^{+}) - n(\mu^{-})}{n(\mu^{+}) + n(\mu^{-})}$$
$$= (0.955 \pm 0.003)\%$$

• Both asymmetries contain contributions from A^b_{sl} and detector-related background asymmetries

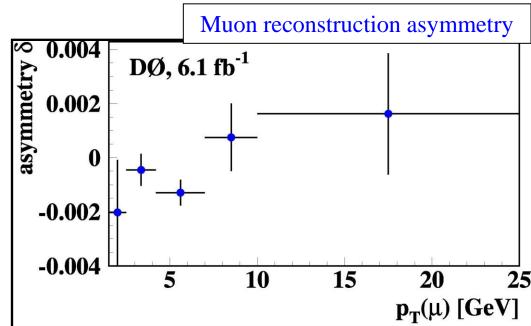
$$A = K A_{sl}^b + A_{bkg}$$

$$a = k A_{sl}^b + a_{bkg}$$


- contribution from A_{sl}^b to a is strongly suppressed by $k=0.041 \ 0.003$
- Determine background contributions A_{bkg} and a_{bkg} using data with minimal input from simulation
- Exploit the correlation of background content in raw asymmetries to reduce the uncertainty on A_{sl}^b

Test of background description

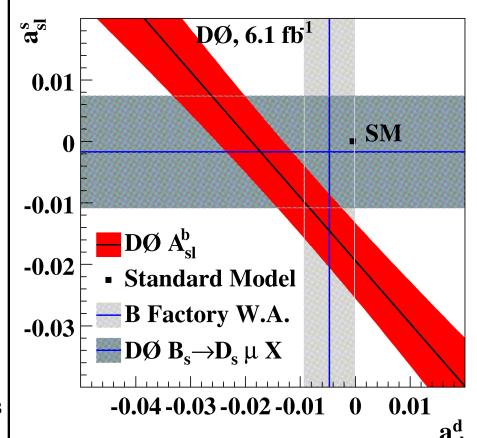
• Raw inclusive muon asymmetry a is dominated by the background asymmetry a_{bkg}


- a_{bkg} is measured in data
- Compare a and a_{bkg} to verify the background description
- This comparison is done as a function of muon p_T
- Good consistency between observed and expected asymmetries
 - $\chi^2/\text{dof} = 2.4/5$ for the difference between these two distributions

Original experimental technique

- Polarities of DØ solenoid and toroid are reversed every ~2 weeks
- 4 equal sized samples with different polarities (++, --, +-, -+) Swapping Magnet Polarity
- difference in reconstruction efficiency between positive and negative particles minimized
- Reconstruction asymmetries reduced from ~1% to <0.1%
 - To be compared with raw dimuon asymmetry A= (0.564 0.053)%

Evidence for an anomalous like-sign charge asymmetry


$$A_{sl}^{b} = (-0.957 \pm 0.251 \text{ (stat)} \pm 0.146 \text{ (syst)})\%$$

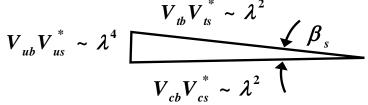
- This result differs from the SM prediction by $\sim 3.2 \sigma$
- A_{sl}^b produces a band in a_{sl}^d v.s. a_{sl}^s plane:

$$A_{sl}^{b} = (0.506 \pm 0.043) a_{sl}^{d} + (0.494 \pm 0.043) a_{sl}^{s}$$

• Obtained result agrees well with other measurements of a^d_{sl} and a^s_{sl}

B. Hoeneisen, ICHEP-2010, DØ Collab., arXiv:1005.2757 accepted by PRD DØ Collab., arXiv:1007.0395 accepted by PRL

Decay $B_s \rightarrow J/\psi \phi$


- Another way to probe CP violation in B_c mixing
- CP violation in $B_s \rightarrow J/\psi \varphi$ decay is described by the phase $\phi^{J/\psi \varphi}$
- Within the SM $\phi^{J/\psi\varphi}$ is related to the angle β_s of the (bs) unitarity triangle:

$$\phi^{J/\psi\varphi,SM} = -2\beta_{s} = 2\arg\left(-\frac{V_{tb}V_{ts}^{*}}{V_{cb}V_{cs}^{*}}\right) = -0.038 \pm 0.002$$

$$V_{ub}V_{us}^{*} \sim \lambda^{4}$$

$$V_{tb}V_{ts}^{*} \sim \lambda^{2}$$

$$V_{cb}V_{cs}^{*} \sim \lambda^{2}$$

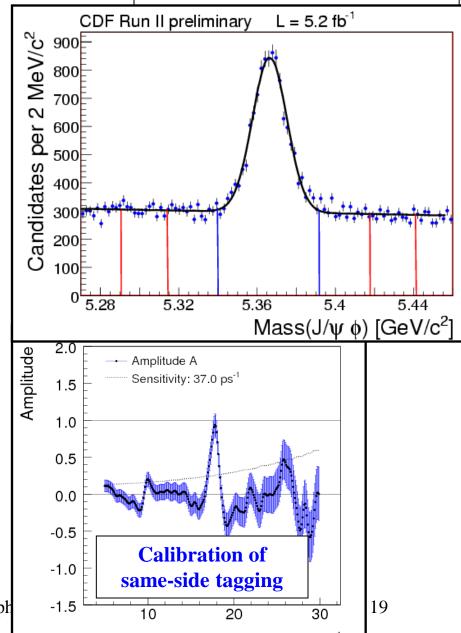
It can be significantly modified by the new physics contribution:

$$\phi^{J/\psi\varphi} = \phi^{J/\psi\varphi,SM} + \phi_s^{NP}$$

 $\phi_{\rm s}^{NP}$ is the same for $\phi^{I/\psi\varphi}$ and $\phi_{\rm s}$

$B_s \rightarrow J/\psi \varphi \text{ (CDF)}$

G. Giurgiu, ICHEP-2010, CDF Public note 10206

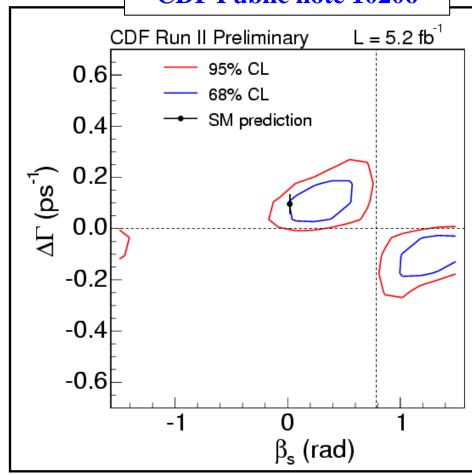

- 5.2 fb⁻¹ of data analyzed
- ~6500 signal events
- Same side flavour tagging calibrated in data
- Strong phases are free
- S wave included in the fit

< 6.5% at 95% CL

$$au_s = 1.529 \pm 0.025 \text{ (stat)} \pm 0.012 \text{ (syst) ps}$$

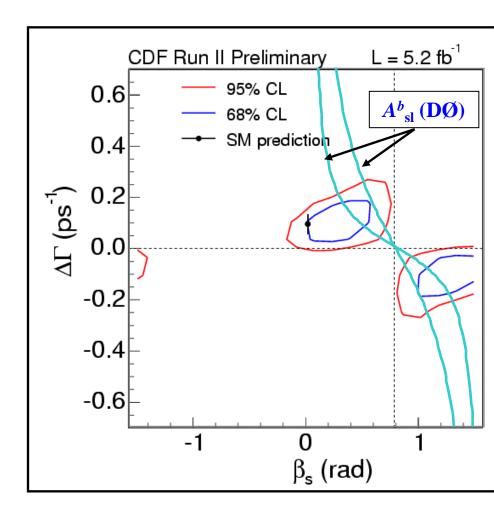
$$\Delta \Gamma_s = 0.075 \pm 0.035 \text{ (stat)} \pm 0.01 \text{ (syst) ps}^{-1}$$

Most precise measurements of $\tau(B_s)$ and $\Delta\Gamma_s$


Mixing Frequency in ps⁻¹

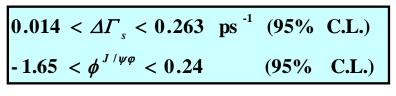
$B_s \rightarrow J/\psi \varphi \text{ (CDF)}$

- Result of angular analysis consistent with SM prediction
 - p-value is 44% (0.8σ)


G. Giurgiu, ICHEP-2010, CDF Public note 10206

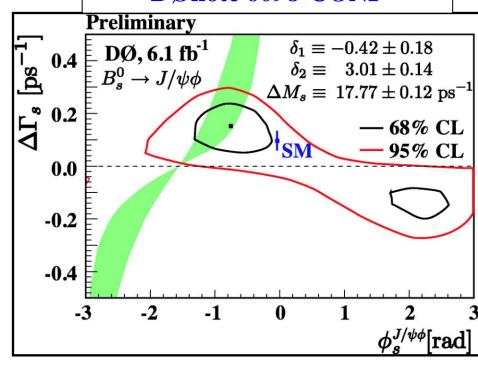
$B_s \rightarrow J/\psi \varphi \text{ (CDF)}$

- Result of angular analysis consistent with SM prediction
 - p-value is 44% (0.8σ)
- Results of CDF and DØ are consistent within $\sim 1\sigma$


$B_s \rightarrow J/\psi \varphi (D\emptyset)$

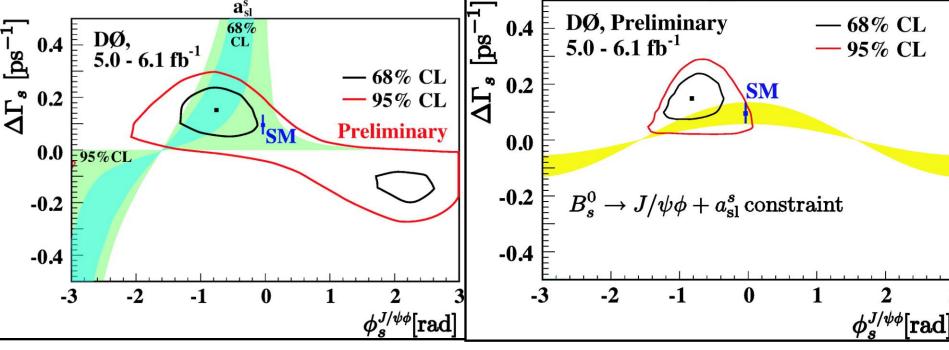
- 6.1 fb⁻¹ of data analyzed
- Only the opposite flavour tagging is used
- Strong phases are constrained to the values from $B^0 \rightarrow J/\psi K^{*0}$
- $\tau(B_s)$ and $\Delta\Gamma_s$ are consistent with other measurements

$$au_s = 1.47 \pm 0.04 \pm 0.01 \text{ ps}$$


$$\Delta \Gamma_s = 0.15 \pm 0.06 \pm 0.01 \text{ ps}^{-1}$$

$$\phi_s = -0.76^{+0.38}_{-0.36} \pm 0.02$$

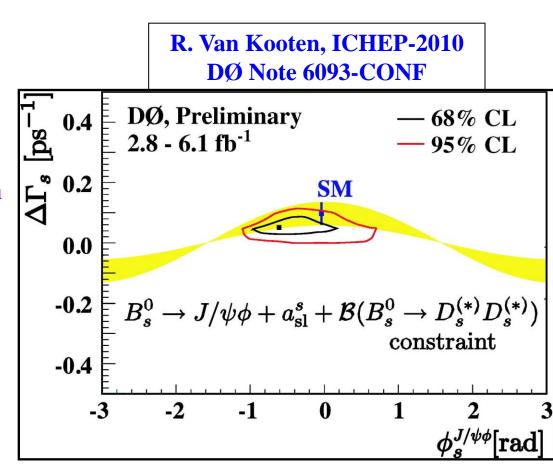
R. Van Kooten, ICHEP-2010, DØnote 6098-CONF


$$-0.235 < \Delta \Gamma_s < -0.040 \text{ ps}^{-1} (95\% \text{ C.L.})$$

 $1.14 < \phi^{J/\psi\varphi} < 2.93$ (95% C.L.)

Combination of DØ results

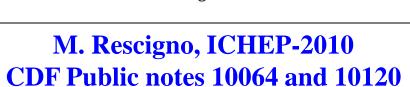
- $B_s \rightarrow J/\psi \varphi$
- $A_{\rm sl}^b$
- a_{sl}^s from $B_s \rightarrow D_s \mu v$
- $a_{sl}^{s} = (-1.00 \pm 0.59)\%$ (D0)
- *p*-value at SM point is 7.5%

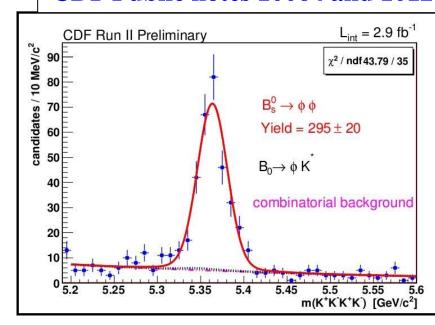

R. Van Kooten, ICHEP-2010 DØ Note 6093-CONF

Combination of DØ results

- $B_s \rightarrow J/\psi \varphi$
- $A_{\rm sl}^b$
- a_{s1}^s from $B_s \rightarrow D_s \mu v$
- $\Delta \Gamma_s^{CP}$ from $B_s \rightarrow D_s^{(*)+} D_s^{(*)-}$
 - $D_s^{(*)+}D_s^{(*)-}$ is mainly CP-even and Br($B_s \rightarrow D_s^{(*)+}D_s^{(*)-}$) is proportional to $\Delta \Gamma_s^{CP}$
- *p*-value of SM point is 6%

$B_{s} \rightarrow \varphi \varphi$



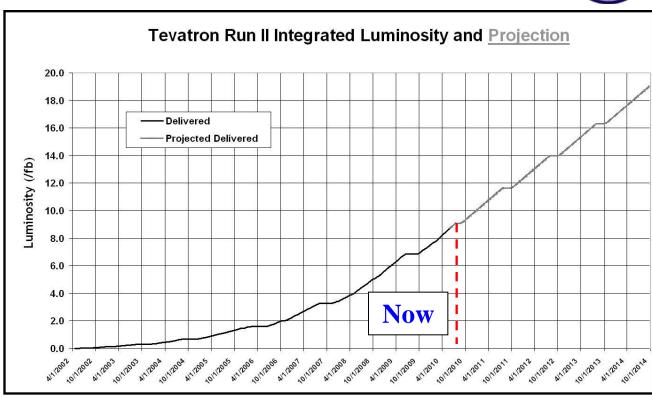

- Complementary channel to study the CP violation in B_s decays
- Decay through $b \rightarrow s$ penguin diagram
- CDF collected enough statistics to measure $Br(B_s \rightarrow \varphi \varphi)$ and perform an angular analysis
- 2.9 fb⁻¹ of data analyzed
- First measurement of polarization amplitudes

$$\left|A_{0}\right|^{2} = 0.348 \pm 0.041 \text{ (stat) } \pm 0.021 \text{ (syst)}$$
 $\left|A_{\parallel}\right|^{2} = 0.287 \pm 0.043 \text{ (stat) } \pm 0.011 \text{ (syst)}$
 $\left|A_{\perp}\right|^{2} = 0.365 \pm 0.044 \text{ (stat) } \pm 0.027 \text{ (syst)}$

 Large transverse polarization fraction observed

$$f_L = 0.348 \pm 0.041 \text{ (stat)} \pm 0.021 \text{ (syst)}$$

 $f_T = 0.652 \pm 0.041 \text{ (stat)} \pm 0.021 \text{ (syst)}$



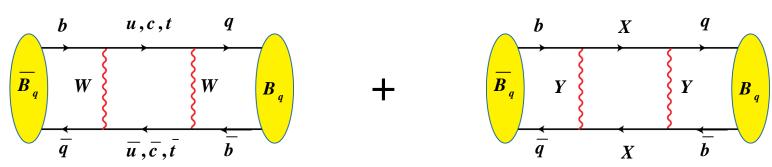
Not the final word yet

- Tevatron experiments now collect
 >2 fb⁻¹ / year
- By the end of 2011 run, the statistics of all measurements will be at least doubled
- Uncertainties of almost all measurements are statistically dominated

Tevatron experiments have excellent prospects to make a strong statement on the contribution of new physics in *B* decays

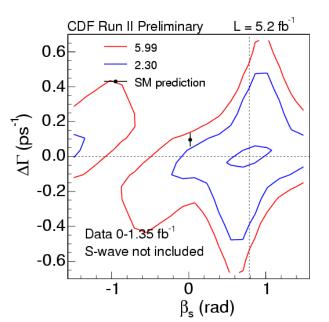
Conclusions

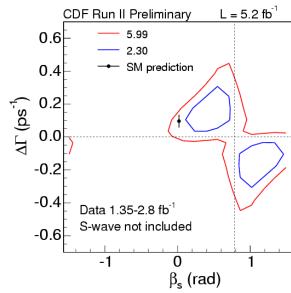
- B physics can provide the first indication of new phenomena beyond the SM
- Extensive study at Tevatron are performed
- New results in $B_s \to \mu^+ \mu^-$, $b \to s \mu^+ \mu^-$ and $B_s \to \varphi \varphi$ have been shown
- Evidence for an anomalous asymmetry A_{sl}^b at 3.2 σ by DØ
- New results in $B_s \rightarrow J/\psi \varphi$ by CDF and DØ demonstrate a better consistency with the SM
- All new results are consistent with A_{sl}^b measurement
- Combination of all DØ results for B_s system gives p-value = 6.0% of the SM
- Excellent prospects for the future improvement of precision

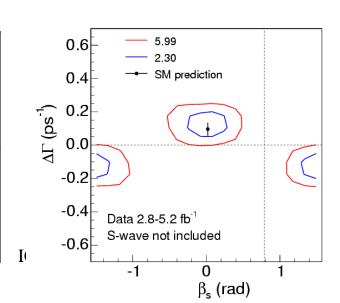

Backup slides

Search Strategy

- Study the processes where the Standard Model predicts a small or zero signal, and where the contribution of new physics (NP) can be significant
 - Small theoretical uncertainties
 - Deviation from the zero level is much easier to observe experimentally
- Processes involving loop diagrams are especially promising
 - Allow contribution of new particles and interactions
 - Act like a virtual accelerator
 - No upper limit on the mass of intermediate particles
 - No breakdowns, stops, power consumption etc.


...it happens




 Latest part of statistics is better consistent with the SM both in CDF and DØ

$B_s \rightarrow J/\psi \phi \ (DO)$

	Full Sample	First 2.8 fb^{-1}	Last 3.3 fb^{-1}
All Candidates	82808	47442	35366
Signal	3435 ± 84	1999 ± 66	1449 ± 50
B_s^0 Mass (MeV)	5362.4 ± 0.8	5362.2 ± 1.0	5362.7 ± 1.2
B_s^0 Mass Width (MeV)	30.4 ± 0.7	29.5 ± 0.9	31.7 ± 1.1
Proper length error scale	1.268 ± 0.006	1.261 ± 0.007	1.271 ± 0.008
$\overline{\tau}_s$ (ps)	1.47 ± 0.04	1.45 ± 0.07	1.46 ± 0.06
$\Delta\Gamma_s \; (\mathrm{ps}^{-1})$	0.15 ± 0.06	0.23 ± 0.08	0.07 ± 0.07
$A_{\perp}(0)$	0.44 ± 0.03	0.42 ± 0.04	0.47 ± 0.04
$ A_0(0) ^2 - A_{ }(0) ^2$	0.35 ± 0.03	0.32 ± 0.04	0.40 ± 0.04
$\phi_s^{J/\psi\phi}$	-0.76 ± 0.37	-0.86 ± 0.33	-0.37 ± 0.81

