Status of flavor constraints on beyond Standard Model scenarios

Nazila Mahmoudi

Laboratoire de Physique Corpusculaire Clermont-Ferrand, France

<ロ> (四) (四) (注) (注) (注) (注)

ICHEP 2010, Paris, 22 - 28 July 2010

Introduction	Flavor Observables	Superiso 000	Constraints 000	FLHA O	Conclusion
Motivations					
	Searches for New F				
	• direct detection				
	 nature of Dark 				
	• indirect evider				
	Indirect searches				
		v to other sear			

• consistency checks with direct observations

New Physics Models

- Two Higgs Doublet Models
- Supersymmetry
- Extra-dimensions

o ...

- Supersymmetry
- Extra-dimensions

3

• Supersymmetry

o ...

Extra-dimensions

臣

Supersymmetry

٩

Extra-dimensions

臣

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
0•					
Indirect Constra	aints				

- Q Radiative penguin decays
- Electroweak penguin decays
- Neutrino modes

Other observables

- Direct search limits
- 3 Anomalous magnetic moment of muon $a_{\mu} = (g 2)/2$
- Relic density

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
0•					
Indirect Constru	aints				

- Q Radiative penguin decays
- electroweak penguin decays
- Neutrino modes

Other observables

Direct search limits

② Anomalous magnetic moment of muon $a_{\mu} = (g - 2)/2$

Relic density

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
00					
Indirect Constra	aints				

- Q Radiative penguin decays
- electroweak penguin decays
- Neutrino modes

Other observables

Oirect search limits

3 Anomalous magnetic moment of muon $a_{\mu} = (g - 2)/2$

Relic density

Introduction	Flavor Observables	Superiso	Constraints	FLHA	Conclusion
00					
Indirect Constra	aints				

- Q Radiative penguin decays
- electroweak penguin decays
- Neutrino modes

Other observables

- Direct search limits
- ② Anomalous magnetic moment of muon $a_{\mu}=(g-2)/2$

Relic density

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
00					
Indirect Constra	aints				

- Q Radiative penguin decays
- electroweak penguin decays
- Neutrino modes

Other observables

- Direct search limits
- **Q** Anomalous magnetic moment of muon $a_{\mu} = (g 2)/2$

Relic density

(日) (部) (王) (王) (王)

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
00					
Indirect Constra	aints				

- Q Radiative penguin decays
- electroweak penguin decays
- Neutrino modes

Other observables

- Direct search limits
- **Q** Anomalous magnetic moment of muon $a_{\mu} = (g 2)/2$
- Relic density

(日) (圖) (필) (필) (필)

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	●0000000				
Flavor observab	les				

I) Radiative penguin decays

- inclusive branching ratio of $B
 ightarrow X_s \gamma$
- isospin asymmetry of $B o K^* \gamma$

イロト イロト イヨト イヨト 三日

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	•0000000				
Flavor observab	les				

I) Radiative penguin decays

- inclusive branching ratio of $B
 ightarrow X_s \gamma$
- isospin asymmetry of $B o K^* \gamma$

イロト イロト イヨト イヨト 三日

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	0000000				
I) Radiative per	iguin decays				

Inclusive branching ratio of $B \rightarrow X_s \gamma$

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > E_0} = \mathcal{B}(\bar{B} \to X_c e \bar{\nu})_{exp} \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{6\alpha_{em}}{\pi C} \left[P(E_0) + N(E_0) \right]$$

 $P(E_0) = P^{(0)}(\mu_b) + \alpha_s(\mu_b) \left[P_1^{(1)}(\mu_b) + P_2^{(1)}(E_0, \mu_b) \right]$ $+ \alpha_s^2(\mu_b) \left[P_1^{(2)}(\mu_b) + P_2^{(2)}(E_0, \mu_b) + P_3^{(2)}(E_0, \mu_b) \right] + \mathcal{O} \left(\alpha_s^3(\mu_b) \right)$

SM prediction: $\mathcal{B}[B \to X_s \gamma] = (3.15 \pm 0.23) \times 10^{-4}$ Experimental values (HFAG 2010): $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.55 \pm 0.25) \times 10^{-4}$

Nazila Mahmoudi

ICHEP 2010 - July 24, 2010

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	0000000				
I) Radiative per	nguin decays				

Inclusive branching ratio of $B \to X_s \gamma$

$$\begin{split} \mathcal{B}(\bar{B} \to X_{s}\gamma)_{E_{\gamma} > E_{0}} &= \mathcal{B}(\bar{B} \to X_{c}e\bar{\nu})_{\exp} \left| \frac{V_{ts}^{*}V_{tb}}{V_{cb}} \right|^{2} \frac{6\alpha_{\mathrm{em}}}{\pi C} \left[\mathcal{P}(E_{0}) + \mathcal{N}(E_{0}) \right] \\ \mathcal{P}(E_{0}) &= \mathcal{P}^{(0)}(\mu_{b}) + \alpha_{s}(\mu_{b}) \left[\mathcal{P}^{(1)}_{1}(\mu_{b}) + \mathcal{P}^{(1)}_{2}(E_{0},\mu_{b}) \right] \\ &+ \alpha_{s}^{2}(\mu_{b}) \left[\mathcal{P}^{(2)}_{1}(\mu_{b}) + \mathcal{P}^{(2)}_{2}(E_{0},\mu_{b}) + \mathcal{P}^{(2)}_{3}(E_{0},\mu_{b}) \right] + \mathcal{O}\left(\alpha_{s}^{3}(\mu_{b})\right) \end{split}$$

SM prediction: $\mathcal{B}[B \to X_s \gamma] = (3.15 \pm 0.23) \times 10^{-4}$ Experimental values (HFAG 2010): $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.55 \pm 0.25) \times 10^{-4}$

Nazila Mahmoudi

ICHEP 2010 - July 24, 2010

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	0000000				
I) Radiative per	iguin decays				

Inclusive branching ratio of $B \rightarrow X_s \gamma$

$$\begin{split} \mathcal{B}(\bar{B} \to X_{s}\gamma)_{E_{\gamma} > E_{0}} &= \mathcal{B}(\bar{B} \to X_{c}e\bar{\nu})_{\exp} \left| \frac{V_{ts}^{*}V_{tb}}{V_{cb}} \right|^{2} \frac{6\alpha_{\mathrm{em}}}{\pi C} \left[P(E_{0}) + N(E_{0}) \right] \\ P(E_{0}) &= P^{(0)}(\mu_{b}) + \alpha_{s}(\mu_{b}) \left[P_{1}^{(1)}(\mu_{b}) + P_{2}^{(1)}(E_{0},\mu_{b}) \right] \\ &+ \alpha_{s}^{2}(\mu_{b}) \left[P_{1}^{(2)}(\mu_{b}) + P_{2}^{(2)}(E_{0},\mu_{b}) + P_{3}^{(2)}(E_{0},\mu_{b}) \right] + \mathcal{O}\left(\alpha_{s}^{3}(\mu_{b})\right) \end{split}$$

SM prediction: $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.15 \pm 0.23) \times 10^{-4}$ Experimental values (HFAG 2010): $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.55 \pm 0.25) \times 10^{-4}$

Nazila Mahmoudi

ICHEP 2010 - July 24, 2010

∃ ⊳

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	0000000				
Flavor observab	les				

II) Electroweak penguin decays

- branching ratio of ${\it B_s} \rightarrow \mu^+ \mu^-$
- inclusive branching ratio of $B o X_s \ell^+ \ell^-$
- branching ratio of $B \to K^{(*)} \mu^+ \mu^-$

イロト イロト イヨト イヨト 三日

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	0000000				
Flavor observab	les				

II) Electroweak penguin decays

- branching ratio of $B_s \to \mu^+ \mu^-$
- inclusive branching ratio of $B \to X_s \ell^+ \ell^-$
- branching ratio of $B \to K^{(*)} \mu^+ \mu^-$

イロト イロト イヨト イヨト 三日

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	0000000				
II) Electroweak	penguin decays				

Branching ratio of
$$B_s
ightarrow \mu^+ \mu^-$$

$$\mathcal{B}(B_{s} \to \mu^{+}\mu^{-}) = \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}} f_{B_{s}}^{2} \tau_{B_{s}} M_{B_{s}}^{3} |V_{tb}V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{M_{B_{s}}^{2}}} \times \left\{ \left(1 - \frac{4m_{\mu}^{2}}{M_{B_{s}}^{2}}\right) M_{B_{s}}^{2} |C_{S}|^{2} + \left|C_{P}M_{B_{s}} - 2C_{A}\frac{m_{\mu}}{M_{B_{s}}}\right|^{2} \right\}$$

Upper limit:
$$\mathcal{B}(B_s \to \mu^+ \mu^-) < 4.3 \times 10^{-8}$$
 at 95% C.L.
SM predicted value: $\mathcal{B}(B_s \to \mu^+ \mu^-)_{SM} \sim 3 \times 10^{-9}$

Interesting in the high $\tan \beta$ regime, where the SUSY contributions can lead to an O(100) enhancement over the SM:

$${\cal B}(B_s o \mu^+ \mu^-)_{MSSM} \sim rac{m_b^2 m_\mu^2 an^6 ~eta}{M_A^4}$$

Nazila Mahmoudi

ICHEP 2010 - July 24, 2010

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	0000000				
II) Electroweak	penguin decays				

Branching ratio of
$$B_s
ightarrow \mu^+ \mu^-$$

$$\begin{split} \beta(B_{s} \to \mu^{+} \mu^{-}) &= \frac{G_{F}^{2} \alpha^{2}}{64 \pi^{3}} f_{B_{s}}^{2} \tau_{B_{s}} M_{B_{s}}^{3} |V_{tb} V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{M_{B_{s}}^{2}}} \\ &\times \left\{ \left(1 - \frac{4m_{\mu}^{2}}{M_{B_{s}}^{2}}\right) M_{B_{s}}^{2} |C_{S}|^{2} + \left|C_{P} M_{B_{s}} - 2 C_{A} \frac{m_{\mu}}{M_{B_{s}}}\right|^{2} \right\} \end{split}$$

<ロ> (四) (四) (三) (三) (三)

Upper limit: $\mathcal{B}(B_s \to \mu^+ \mu^-) < 4.3 \times 10^{-8}$ at 95% C.L. SM predicted value: $\mathcal{B}(B_s \to \mu^+ \mu^-)_{SM} \sim 3 \times 10^{-9}$

Interesting in the high $\tan\beta$ regime, where the SUSY contributions can lead to an O(100) enhancement over the SM:

$${\cal B}(B_s o \mu^+ \mu^-)_{MSSM} \sim rac{m_b^2 m_\mu^2 an^6 ~eta}{M_A^4}$$

Nazila Mahmoudi

ICHEP 2010 - July 24, 2010

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	0000000				
II) Electroweak	penguin decays				

Branching ratio of
$$B_s \to \mu^+ \mu^-$$

$$\begin{aligned} \mathcal{B}(B_{s} \to \mu^{+} \mu^{-}) &= \frac{G_{F}^{2} \alpha^{2}}{64 \pi^{3}} f_{B_{s}}^{2} \tau_{B_{s}} M_{B_{s}}^{3} |V_{tb} V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{M_{B_{s}}^{2}}} \\ &\times \left\{ \left(1 - \frac{4m_{\mu}^{2}}{M_{B_{s}}^{2}} \right) M_{B_{s}}^{2} |C_{S}|^{2} + \left| C_{P} M_{B_{s}} - 2 C_{A} \frac{m_{\mu}}{M_{B_{s}}} \right|^{2} \right\} \end{aligned}$$

(ロ) (部) (E) (E) E

Upper limit: $\mathcal{B}(B_s \to \mu^+ \mu^-) < 4.3 \times 10^{-8}$ at 95% C.L. SM predicted value: $\mathcal{B}(B_s \to \mu^+ \mu^-)_{SM} \sim 3 \times 10^{-9}$

Interesting in the high tan β regime, where the SUSY contributions can lead to an O(100) enhancement over the SM:

$$\mathcal{B}(B_{s}
ightarrow \mu^{+}\mu^{-})_{MSSM}\sim rac{m_{b}^{2}m_{\mu}^{2} an^{6}~eta}{M_{A}^{4}}$$

Nazila Mahmoudi

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	0000000				
Flavor observab	les				

III) Neutrino modes

- branching ratio of $B \rightarrow \tau \nu$
- branching ratio of B
 ightarrow D au
 u
- branching ratios of $D_s
 ightarrow au
 u / \mu
 u$
- branching ratio of $K \rightarrow \mu \nu$
- double ratios of leptonic decays

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	0000000				
Flavor observab	les				

イロト イロト イヨト イヨト 三日

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	00000000				
III) Neutrino m	odes				

Branching ratio of B
ightarrow au
u

Tree level process, mediated by W^+ and H^+ , higher order corrections from sparticles

$$\begin{aligned} \mathcal{B}(B \to \tau\nu) &= \frac{G_F^2 |V_{ub}|^2}{8\pi} m_\tau^2 f_B^2 m_B \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \left|1 - \left(\frac{m_B^2}{m_{H^+}^2}\right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}\right|^2 \\ \epsilon_0 &= -\frac{2\alpha_s}{3\pi} \frac{\mu}{m_{\tilde{g}}} H_2 \left(\frac{m_Q^2}{m_{\tilde{g}}^2}, \frac{m_D^2}{m_{\tilde{g}}^2}\right), \quad H_2(x, y) = \frac{x \ln x}{(1 - x)(x - y)} + \frac{y \ln y}{(1 - y)(y - x)} \\ & \swarrow \end{aligned}$$
Large uncertainty from V_{ub} and sensitive to f_B

Also used:

$$R_{\tau\nu\tau}^{\rm MSSM} = \frac{{\rm BR}(B_u \to \tau\nu_{\tau})_{\rm MSSM}}{{\rm BR}(B_u \to \tau\nu_{\tau})_{\rm SM}} = \left[1 - \left(\frac{m_B^2}{m_{H^+}^2}\right)\frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta}\right]^2$$

ICHEP 2010 - July 24, 2010

크

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	00000000				
III) Neutrino m	odes				

Branching ratio of B
ightarrow au
u

Tree level process, mediated by W^+ and H^+ , higher order corrections from sparticles

Also used:

$$R_{\tau\nu_{\tau}}^{\rm MSSM} = \frac{{\rm BR}(B_u \to \tau\nu_{\tau})_{\rm MSSM}}{{\rm BR}(B_u \to \tau\nu_{\tau})_{\rm SM}} = \left[1 - \left(\frac{m_B^2}{m_{H^+}^2}\right)\frac{\tan^2\beta}{1 + \epsilon_0\tan\beta}\right]^2$$

ICHEP 2010 - July 24, 2010

크

イロン イ部 とくほど くほどう

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	00000000				
III) Neutrino mo	odes				

Branching ratio of $D_s \rightarrow \ell \nu$

Tree level process similar to B
ightarrow au
u

$$\begin{split} \mathcal{B}(D_{s} \to \ell \nu) &= \frac{G_{F}^{2}}{8\pi} \left| V_{cs} \right|^{2} f_{D_{s}}^{2} m_{\ell}^{2} M_{D_{s}} \tau_{D_{s}} \left(1 - \frac{m_{\ell}^{2}}{M_{D_{s}}^{2}} \right)^{2} \\ & \times \left[1 + \left(\frac{1}{m_{c} + m_{s}} \right) \left(\frac{M_{D_{s}}}{m_{H^{+}}} \right)^{2} \left(m_{c} - \frac{m_{s} \tan^{2} \beta}{1 + \epsilon_{0} \tan \beta} \right) \right]^{2} \text{ for } \ell = \mu, \tau \end{split}$$

- Competitive with and complementary to analogous observables
- Dependence on only one lattice QCD quantity
- Interesting if lattice calculations eventually prefer f_{D_s} < 250 MeV
- Promising experimental situation (BES-III)

(日) (部) (E) (E) (E) (E)

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
	0000000				
III) Neutrino mo	odes				

Double ratios of leptonic decays

For example:

$$R = \left(\frac{\mathrm{BR}(B_{s} \to \mu^{+}\mu^{-})}{\mathrm{BR}(B_{u} \to \tau\nu)}\right) / \left(\frac{\mathrm{BR}(D_{s} \to \tau\nu)}{\mathrm{BR}(D \to \mu\nu)}\right)$$

From the form factor point of view:

$$R \propto \left(rac{f_{B_s}}{f_B}
ight) \left/ \left(rac{f_{D_s}}{f_D}
ight) pprox 1$$

R has no dependence on the form factors, contrary to each decay taken individually!

- No dependence on lattice quantities
- Interesting for V_{ub} determination
- Interesting for probing new physics
- Promising experimental situation

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
		000			
SuperIso					

SuperIso is a public C program

- dedicated to the flavor physics observable calculations
- implemented models: SM, THDM, MSSM and NMSSM with MFV
- interfaced to spectrum calculators (2HDMC, SOFTSUSY, ISAJET, SUSPECT, SPHENO, NMSSMTOOLS)

• SuperIso Relic: extension to the relic density calculation, featuring alternative cosmological scenarios

F. Mahmoudi, Comput. Phys. Commun. 178 (2008) 745

F. Mahmoudi, Comput. Phys. Commun. 180 (2009) 1579

F. Mahmoudi, Comput. Phys. Commun. 180 (2009) 1718

A. Arbey & F. Mahmoudi, Comput. Phys. Commun. 181 (2010) 1277

Nazila Mahmoudi

ICHEP 2010 - July 24, 2010

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
		000			
Download					

SuperIso

By Farvah Nazila Mahmoudi

-	
18	Description
1	Manual
	Suparleo Dalio
	Suberrao Ivenc
-	Description
12	Manual

= Superiso

m Superiso Relic

= Superiso Relic shared

Calculation of flavor physics observables

Superiors is a program for calculation of flavor physics observables in the Standard Model (SM), general to HorHgad-oublied (MSSM) and next to mnimal supersymmetric Standard Model (MSSM) and next to mnimal supersymmetric Standard Model (MSSM) and next to mnimal supersymmetric Standard Model (MSSM) and next to mnimal supersymmetry of B \rightarrow K^a gamma Although (MSSM). Superiso, in addition to the isospin asymmetry of B \rightarrow K^a gamma Although (MSSM) and next to mnimal supersymmetry and the set of the SM standard Model (MSSM) and next to the set of the SM standard Model (MSSM) and next to the set of the SM standard Model (MSSM) and next to the set of the SM standard Model (MSSM) and next to the set of the SM standard Model (MSSM) and next to the set of the SM standard MSM stan

For the isospin asymmetry, the program calculates the NLO supersymmetric contributions using the effective Hamiltonian approach and within the QCD factorization method. Isospin asymmetry is a particularly useful observable to constrain supersymmetric parameter spaces.

Superiso uses a SUSY Les Houches Accord file (SLHA1 or SLHA2) as input, which can be either generated automatically by the program via a call to SOFTSUSY, ISAJET, NMSSMTools or provided by the user. Superiso can also use the LHA inspired format for the 2HDM generated by 2HDMC.

Superiso is able to perform the calculations automatically in the SM, in the 2HDM (general 2HDM or types I-IV) and in different supersymmetry breaking scenarios, such as mSUGRA, NUHM, AMSB and GMSB (for MSSM) and CNMSSM, NGMSB and NNUHM (for NMSSM).

For any comment, question or bug report please contact Nazila Mahmoudi.

Manual

the latest version of the manual can be found here (10 September 2009).

For more information:

- F. Mahmoudi, arXiv:0710.3791 [hep-ph]. JHEP12 (2007), 026
- M.R. Ahmady and F. Mahmoudi, hep-ph/0608212, Phys. Rev. D75 (2007), 015007
- D. Eriksson, F. Mahmoudi and O. Stål, arXiv:0808.3551 [hep-ph], JHEP11 (2008), 035

Introduction	Flavor Observables	Superlso 000	Constraints ●○○	FLHA O	Conclusion
THDM					

THDM (Types I–IV)

F. Mahmoudi & O. Stål, Phys. Rev. D81, 035016 (2010)

Introduction	Flavor Observables	Superiso 000	Constraints 0●0	FLHA O	Conclusion O
MSSM					

NUHM scenario

D. Eriksson, F. Mahmoudi & O. Stål, JHEP 0811 (2008)

(日) (部) (目) (日)

Introduction	Flavor Observables	Superlso	Constraints	FLHA	Conclusion
MSSM					

NUHM scenario

D. Eriksson, F. Mahmoudi & O. Stål, JHEP 0811 (2008)

3

《日》 《圖》 《圖》 《圖》

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
			000		
MSSM					

Double ratios

$$R = \left(\frac{\mathrm{BR}(B_{s} \to \mu^{+}\mu^{-})}{\mathrm{BR}(B_{u} \to \tau\nu)}\right) / \left(\frac{\mathrm{BR}(D_{s} \to \tau\nu)}{\mathrm{BR}(D \to \mu\nu)}\right)$$

 $|V_{ub}| = (3.92 \pm 0.46) \times 10^{-4}$ $f_{B_{s}} = 238.8 \pm 9.5$ MeV (for $B_{s} \to \mu^+ \mu^-$)

A.G. Akeroyd & F. Mahmoudi, arXiv:1007.2757

・ロン ・部と ・ヨン ・ヨン

E

Nazila Mahmoudi

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion		
				•			
Flavour Les Houches Accord							

The Flavour Les Houches Accord format

Standard format for flavour related quantities, providing:

- A model independent parametrization
- A standalone flavour output in the FLHA format
- Based on the existing SLHA structure
- A clear and well-defined structure for interfacing computational tools of "New Physics" models with low energy flavour calculations
- That will allow different programs to talk and to be interfaced, and users to have a clear and well defined result that can eventually be used for different purposes

For more information

Wiki page:

 $http://www.lpthe.jussieu.fr/LesHouches09Wiki/index.php/Flavour_Les_Houches_Accord$

Les Houches write-up: arXiv:1003.1643

ヘロマ 人間マ 人間マ 人口マ

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
					•
Conclusion					

• Indirect constraints and in particular flavor physics are essential to restrict new physics parameters

- That will become even more interesting when combined with LHC data
- This kind of analysis can be generalized to more new physics scenarios

Ongoing Developments of Superlso

- Extension to NMFV
- Implementation of other observables

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
					•
Conclusion					

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- This kind of analysis can be generalized to more new physics scenarios

- Extension to NMFV
- Implementation of other observables

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
					•
Conclusion					

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- This kind of analysis can be generalized to more new physics scenarios

- Extension to NMFV
- Implementation of other observables

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
					•
Conclusion					

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- This kind of analysis can be generalized to more new physics scenarios

- Extension to NMFV
- Implementation of other observables

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
					•
Conclusion					

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- This kind of analysis can be generalized to more new physics scenarios

- Extension to NMFV
- Implementation of other observables

Introduction	Flavor Observables	SuperIso	Constraints	FLHA	Conclusion
Backup: General THDM					

Charged Higgs boson couplings to fermions:

$$\begin{aligned} H^{+}D\bar{U}: & \frac{ig}{2\sqrt{2}m_{W}}V_{UD}\left[\lambda^{U}m_{U}\left(1-\gamma^{5}\right)-\lambda^{D}m_{D}\left(1+\gamma^{5}\right)\right] \\ H^{+}\ell^{-}\bar{\nu}_{\ell}: & -\frac{ig}{2\sqrt{2}m_{W}}\lambda^{\ell}m_{\ell}\left(1+\gamma^{5}\right) \end{aligned}$$

THDM types I–IV

- $\bullet~$ Type I: one Higgs doublet provides masses to all quarks (up and down type quarks) ($\sim~$ SM)
- $\bullet\,$ Type II: one Higgs doublet provides masses for up type quarks and the other for down-type quarks ($\sim\,$ MSSM)
- Type III,IV: different doublets provide masses for down type quarks and charged leptons

Туре	λ_U	λ_D	λ_L
1	\coteta	$\cot eta$	$\cot \beta$
II	\coteta	- aneta	- aneta
III	\coteta	- aneta	$\cot eta$
IV	$\cot eta$	\coteta	- aneta