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By now there are many examples in string theory where the
correspondence between black hole entropy and statistical
entropy has been tested for extremal BPS black holes.

SBH(Q) = Sstat(Q)

SBH = A/4GN, Sstat = ln dmicro

Initial tests were carried out for black holes carrying large
charges for which the computation simplifies on both
sides.
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This suggests that in the large charge limit a black hole
represents an ensemble of microstates whose total
number is given by exp[SBH].

What happens beyond the large charge limit?

On the microscopic side we can, in principle, count states
to arbitrary accuracy.

Is the microscopic description more fundamental, and
black holes only capture some average properties in the
limit of large size?

Or, does a black hole contain complete information about
the ensemble?
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For example:

1. Do black holes encode systematically corrections to the
entropy due to finite size effect?

2. Are black holes capable of computing the distribution of
global quantum numbers among the microstates?
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Quantum entropy function is an attempt to answer these
questions in the affirmative.

– provides an algorithm for computing black hole entropy,
distribution of global charges, etc. to arbitrary accuracy.

Many of the results have been tested by independent
calculations on the microscopic side.
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Quantum entropy function

Let us denote by dhor the degeneracy associated with the
black hole horizon.

In the leading order

dhor = exp[SBH]

In string theory this receives two types of corrections.

1 Higher derivative (α′) corrections in classical string
theory.

2 Quantum (gs) corrections.

Of these the α′ corrections are captured by Wald’s
modification of the Bekenstein-Hawking formula.

Thus in classical string theory dhor = exp[Swald]
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Quantum corrections:

What about quantum corrections?

Naive guess: apply Wald’s formula again, but replacing the
classical action by the 1PI action.

This will again give a simple algebraic method for
computing the entropy.

This prescription is not complete since the 1PI action
typically has non-local contribution due to massless states
propagating in the loops.
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We shall now turn to the full quantum computation of dhor
from the macroscopic side.

The main tool: AdS2/CFT1 correspondence.

– uses the observation that the near horizon geometry of
an extremal black hole always has the form of AdS2 × K.
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Steps for computing dhor

1. Consider the euclidean AdS2 metric:

ds2 = v
(
(r2 − 1)dθ2 +

dr2

r2 − 1

)
, 1 ≤ r <∞, θ ≡ θ + 2π

= v(sinh2 η dθ2 + dη2), r ≡ cosh η, 0 ≤ η <∞

Regularize the infinite volume of AdS2 by putting a cut-off
r ≤ r0f(θ) for some smooth periodic function f(θ).

This makes the AdS2 boundary have a finite length L.
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2. Define ZAdS2 to be the partition function of string theory
in the near horizon AdS2 × K geometry.

3. By AdS2/CFT1 correspondence:

ZAdS2 = ZCFT1

ZCFT1 = Tr(e−LH) = d0 e−L E0

H: Hamiltonian of dual CFT1 at the boundary of AdS2.

(d0,E0): (degeneracy, energy) of the states of CFT1.
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ZAdS2 = ZCFT1 = d0 e−L E0

What is CFT1?

– must be the quantum mechanics obtained by taking the
infrared limit of the brane system describing the black
hole.

This consists of a finite dimensional Hilbert space,
consisting of the ground states of the brane system in a
given charge sector.

Thus d0 is the number of quantum states of the extremal
black hole.

This suggests that we identify dhor with d0.
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4. Thus we can define dhor by expressing ZAdS2 as

ZAdS2 = eCL × dhor as L→∞

C: A constant

dhor: ‘finite part’ of ZAdS2

With this definition dhor calculates d0, ı.e. the degeneracy
of the dual CFT1.

Consistency check:

dhor gives us back exp[Swald] in the classical limit.
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Global charge distribution

Suppose the theory has a global ZZN symmetry generated
by g.

Can we calculate the weighted degeneracy

Tr(g)?

By calculating Tr(gk) for all k we can find the distribution of
g quantum numbers among the microstates of the black
hole.
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By following the logic of AdS/CFT correspondence we find
that Trhor(g) is given by the finite part of a twisted partition
function

– the path integral is to be carried out over fields satisfying
g twisted boundary condition under θ → θ + 2π.



Introduction Quantum entropy function Tests Conclusion

Since euclidean AdS2 is contractible the original near
horizon geometry is no longer a valid saddle point in the
path integral.

The leading saddle point comes from a ZZN orbifold of the
original near horizon geometry.

In the classical limit one gets

Tr(g) ∼ exp[Swald/N]
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Tests

Many of the predictions of quantum entropy function have
been verified using the exact microscopic results in a
class of N = 4 supersymmetric string theories.

In these theories the degeneracies and weighted
degeneracies of black hole microstates can be calculated
exactly by representing them as a configuration of branes.

The main obstruction: Calculating the quantum entropy
function by evaluating the path integral of string theory in
the near horizon geometry.

Nevertheless to whatever extent the latter has been
calculated the result always agrees with the microscopic
results.
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These agreements include:

1. The leading contribution.

2. First subleading corrections.

3. Logarithmic corrections (∝ ln A)

4. Prediction for Tr(g)

etc.
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Conclusions

Quantum gravity in the near horizon geometry contains
detailed information about not only the total number of
microstates. but also finer details e.g. the ZZN quantum
numbers carried by the microstates.

Thus at least for extremal black holes there seems to be an
exact duality between

Gravity description⇔ Microscopic description

The gravity description contains as much information as
the microscopic description, but in quite different way.
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